首页 申请书推荐信华体会电子竞技 通知工作总结华体会体育2串1 策划书工作报告合同演讲稿职业规划
当前位置:98158范文网>教育范文>教学设计>三角形的内角和教学设计

三角形的内角和教学设计

时间:2024-01-29 07:00:17 教学设计 我要投稿

三角形的内角和教学设计

  作为一位兢兢业业的人民教师,编写教学设计是必不可少的,教学设计是对学业业绩问题的解决措施进行策划的过程。那么大家知道规范的教学设计是怎么写的吗?以下是小编为大家整理的三角形的内角和教学设计,欢迎阅读与收藏。

三角形的内角和教学设计

三角形的内角和教学设计1

  教学目标:

  1、掌握三角形内角和是180°,并能应用这一规律解决一些实际问题。

  2、让学生经历“猜想、动手操作、直观感知、探索、归纳、应用”等知识形成的过程,掌握“转化”的数学思想方法,培养学生动手实践能力,发展学生的空间思维能力。

  3、在活动中,让学生体验主动探究数学规律的乐趣,体验数学的价值,激发学生学习数学的热情,同时使学生养成独立思考的好习惯。

  教学重点:

  让学生经历“三角形内角和是180度”这一知识的形成、发展和应用的全过程。

  教学难点:

  三角形内角和的探索与验证。

  教学准备:

  量角器各种类型的三角形(硬的纸板)三角板

  教学过程:

  一、设疑激趣,导入新课

  师:今天老师给大家带来了一位朋友(课件)出示三角形,师:对于三角形你有哪些认识与了解。

  生:三角形有锐角三角形、直角三角形、钝角三角形

  生:由三条线段围成的平面图形叫三角形。

  师:介绍内角、内角和

  三角形中每两条边组成的角叫做三角形的.内角。

  师:三角形有几个内角。

  生:三个。

  师:这三个角的和,就叫做三角形的内角和。你知道三角形内角和是多少度?

  生1:我通过直角三角板知道的

  生2:我通过长方形中四个角都是直角,是360度,三角形是长方形的一半,所以是180度

  生3:我预习了,三角形内角和就是180度)

  师:是不是向他们说的一样,所有的三角形内角和都是180度呢?

  二、自主探索,进行验证

  师:你打算怎样验证呢?

  生1用量角器量出每个角的度数,再加一加看看是不是180度生2:把三角形撕下来

  师:怎么撕?象这样撕吗?(作乱撕状),能说的详细些具体些吗?生2:(补充),把三个角撕下来,拼在一起,看能不能拼成一个平角

  生3:把三个角顺次画下来也可以

  生4:拼一拼的方法

  师:好!同学们想出了这么多办法,下面就用你喜欢的方法验证师:CAI多媒体课件展示操作要求:

  合作探究:

  1、每四人一组,每组至少选两个三角形,用你喜欢的方法验证

  2、看那个小组验证的方法新、方法多

  师:在巡视,并进行个别操作指导

  三、交流探索的方法和结果

  孩子们探索的方法可能有三个:

  生1:一是用量角器量各个角,然后再算出三角形中三个角的度数和,用这种方法求的结果可能是180度也可能比180度小一些,也可能比180度大一些。

  生2:二是用转化法,把三角形中三个角剪下来,拼在一起成为一个平角,由此得出三角形中三个角的和是180度。

  生3:三是折一折,把三个角折在一起,折在一起成为一个平角,由此得出三角形中三个角的和是180度。

  四、归纳总结,体验成功

  师:孩子们,三角形中三个角的度数和到底是多少度呢?

  生:180度。

  五、拓展应用

  1、基础练习

  2、等边三角形、等腰三角形、直角三角形

  六、课堂小结

  谈一谈自己的学习收获。

三角形的内角和教学设计2

  一、教学目标

  1、知识目标:通过测量、撕拼(剪拼)、折叠等方法,探索和发现三角形三个内角的度数和等于180°这一规律,并能实际应用。

  2、能力目标:培养学生主动探索、动手操作的能力。使学生养成良好的合作习惯。

  3、情感目标:让学生体会几何图形内在的结构美。并充分体会到学习数学的快乐。

  二、教学过程

  (一)创设情境,导入新课

  1、师:我们已经认识了三角形,你知道哪些关于三角形的知识?

  (学生畅所欲言。)

  2、师:我们在讨论三角形知识的时候,三角形中的三个好朋友却吵了起来,想知道是怎么回事吗?让我们一起去看看吧!

  师口述:一个大的直角三角形说:“我的个头大,我的内角和一定比你们大。”一个钝角三角形说:“我有一个钝角,我的内角和才是最大的)一个小的锐角三角形很委屈的样子说“是这样吗?”,3、到底谁说的对呢?今天我们就来研究有关三角形内角和的知识。(板书课题:三角形内角和)

  (二)自主探究,发现规律

  1、认识什么是三角形的内角和。

  师:你知道什么是三角形的内角和吗?

  通过学生讨论,得出三角形的内角和就是三角形三个内角的度数和。

  2、探究三角形内角和的特点。

  ①让学生想一想、说一说怎样才能知道三角形的内角和?

  学生会想到量一量每个三角形的内角,再相加的方法来得到三角形的内角和。(如果学生想到别的方法,只要合理的,教师就给予肯定,并鼓励他们对自己想到的方法进行)

  ②小组合作。

  通过小组合作后交流,汇报。(教师同时板书出几个小组汇报的结果)让学生们发现每个三角形的内角和都在180°左右。

  引导学生推测出三角形的内角和可能都是180°。

  3、验证推测。

  让学生动脑筋想一想,怎样才能验证自己的推想是否正确,学生可能会想到用折拼或剪拼的方法来看一看三角形的三个角和起来是不是180°,也就是说三角形的三个角能不能拼成一个平角。

  (小组合作验证,教师参与其中。)

  4、全班交流,共同发现规律。

  当学生汇报用折拼或剪拼的方法的时候,指名学生上黑板展示结果。

  学生交流、师生共同总结出三角形的内角和等于180°。教师同时板书(三角形内角和等于180°。)

  5、师谈话:三个三角形讨论的问题现在能解决了吗?你现在想对这三个三角形说点什么吗?(让学生畅所欲言,对得出的三角形内角和是180°做系统的整理。)

  (三)巩固练习,拓展应用

  根据发现的三角形的新知识来解决问题。

  1、完成“试一试”

  让学生独立完成后,集体交流。

  2、游戏:选度数,组三角形。

  请选出三个角的度数来组成一个三角形。

  150°10°15°18°20°32°

  35°50°52°54°56°58°

  130°70°72°75°60°

  学生回答的同时,教师操作课件,把学生选择的度数拖入方框内,通过电脑计算相加是否等于180°,来验证学生的选择是否正确。验证学生选的对了以后,再让学生判断选择的度数所组成的三角形按角的大小分类,属于哪种三角形。并说出理由。

  3、“想想做做”第1题

  生独立完成,集体订正,并说说解题方法。

  4、“想想做做”第2题

  提问:为什么两个三角形拼成一个三角形后,内角和还是180度?

  5、“想想做做”第3题

  生动手折折看,填空。

  提问:三角形的内角和与三角形的大小有关系吗?三角形越大,内角和也越大吗?

  6、“想想做做”第5题

  生独立完成,说说不同的解题方法。

  7、“想想做做”第6题

  学生说说自己的想法。

  8、思考题

  教师拿一个大三角形,提问学生内角和是多少?用剪刀剪成两个三角形,提问学生内角和是多少?为什么?再剪下一个小三角形,提问学生内角和是多少?为什么?最后建成一个四边形,提问学生内角和是多少?你能推导

  出四边形的内角和公式吗?

  (四)课堂总结

  本节课我们学习了哪些内容?(生自由说),同学们说得真好,我们要勇于从事实中寻找规律,再将规律运用到实践当中去。

  三教后反思:

  “三角形的内角和”是小学数学教材第八册“认识图形”这一单元中的`一个内容。通过钻研教材,研究学情和学法,与同组老师交流,我将本课的教学目标确定为:

  1、通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的度数和等于180度。

  2、已知三角形两个角的度数,会求出第三个角的度数。

  本节教学是在学生在学习“认识三角形”的基础上进行的,“三角形内角和等于180度”这一结论学生早知晓,但为什么三角形内角和会一样?这也正是本节课要与学生共同研究的问题。所以我将这节课教学的重难点设定为:通过动手操作验证三角形的内角和是180°。教学方法主要采用了实验法和演示法。学生的折、拼、剪等实践活动,让学生找到了自己的验证方法,使他们体验了成功,也学会了学习。下面结合自己的教学,谈几点体会。

  (一)创设情景,激发兴趣

  俗话说:“良好的开端是成功的一半”。一堂课的开头虽然只有短短几分钟,但它却往往影响一堂课的成败。因此,教师必须根据教学内容和学生实际,精心设计每一节课的开头导语,用别出心裁的导语来激发学生的学习兴趣,让学生主动地投入学习。本节课先创设画角质疑的情景,当学生画不出来含有两个直角的三角形时,学生想说为什么又不知怎么说,学生探究的兴趣因此而油然而生。

  (二)给学生空间,让他们自主探究

  “给学生一些权利,让他们自己选择;给学生一个条件,让他们自己去锻炼;给学生一些问题,让他们自己去探索;给学生一片空间,让他们自己飞翔。”我记不清这是谁说过的话,但它给我留下深刻的印象。它正是新课改中学生主体性的表现,是以人为本新理念的体现。所以在本节课中我注重创设有助于学生自主探究的机会,通过“想办法验证三角形内角和是180度”这一核心问题,引发学生去思考、去探究。我让他们将课前准备好的三角形拿出来进行研究,学生通过折一折、拼一拼、剪一剪等活动找到自己的验证方法。学生拿着他们手中的三角形,在讲台上讲述自己的验证方法,虽然有的方法很不成熟,但也可以看出这个过程中,渗透了他们发现的乐趣。这样,学生在经历“再创造”的过程中,完成了对新知识的构建和创造。

  (三)以学定教,注重教学的有效性

  新课表指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。要把学生的个人知识、直接经验和现实世界作为数学教学的重要资源,即以学定教,注重每个教学环节的有效性。本课中当我提出“为什么一个三角形中不能有两个角是直角”时,有学生指出如果有两个直角,它就拼不成了一个三角形;也有学生说如果有两个直角,它就趋向于长方形或正方形。“为什么会这样呢”?学生沉默片刻后,忽然有个学生举手了:“因为三角形的内角和是180度,两个直角已经有180度了,所以不可能有两个角是直角。”这样的回答把本来设计的教学环节打乱了,此时我灵机把问题抛给学生,“你们理解他说的话吗、你怎么知道内角和是180度、谁都知道三角形的内角和是180度”等,当我看到大多数的已经知道这一知识时,我就把学生直接引向主题“想不想自己研究证明一下三角形的内角和是不是180度。”激发了学生探究的兴趣,使学生马上投入到探究之中。

  在练习的时候,由于形式多样,所以学生的兴趣非常高涨,效果很好。通过多边形内角和的思考以及验证,发展了学生的空间想象力,使课堂的知识得以延伸。

三角形的内角和教学设计3

  一、教材内容分析

  三角形的内角和是三角形的一个重要特征。本课时安排在三角形的特性和分类之后进行的,它是学生以后学习多边形的内角和的基础。学生在掌握知识方面:基本掌握三角形的分类,角的分类等有关知识;能力方面:学生已具备了初步的动手操作能力和主观探究能力以及合作学习的习惯。因此,教材特重视知识的探索宇发现,安排了一系列的实验操作活动。教材在呈现教学内容时,即重视知识的形成过程,又注意提供学生自主探究的空间,为教师组织教学提供了清晰的.思路。学生通过量;剪;拼;算等活动,让学生探索。实验。发现。验证三角形内角和是180度。

  二、教学目标(知识,技能,情感态度、价值观)

  知识于技能:让学生通过亲自动手量。剪。拼等活动,发现三角形内角和是180度,并会应用这一知识解决生活中简单的实际问题。

  过程与方法:让学生在动手获取知识的过程中,培养学生的创新意识和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”的数学思想

  情感态度与价值观:通过学习让学生体验成功的喜悦,激发学生主动学习数学的兴趣。

  三、学习者特征分析

  学生已经认识了三角形,并掌握了三角形的分类,较熟悉平角等有关知识;具备了初步的动手操作能力和主动探究能力。因此概念的形成是通过量。算。拼等活动,让学生探索。实验。发现。讨论。推理。归纳出三角形的内角和是180度。

  四、教学策略选择与设计

  1。关注学生的学习过程,注意培养学生动手操作能力以及和作与交流的能力,培养应用和创新意识。

  2。从学生已有的知识和生活经验出发,让学生通过操作。观察。思考。交流。推理。归等活动,培养学生的学习兴趣,体验数学的价值。

  五、教学环境及资源准备

  教具准备;多媒体课件。一副三角板。

  学具准备:量角器。各种三角形。剪刀等。

三角形的内角和教学设计4

  一、说教材

  北师版八年级下册第六章《证明一》,是在前面对几何结论已经有了一定的直观认识的基础上编排的,而前几册对有关几何结论都曾进行过简单的说理,本章内容则严格给出这些结论的证明,并要求学生掌握证明的一般步骤及书写表达格式。《三角形内角和定理的证明》则是对前几节证明的自然延续。此外,它的证明中引入了辅助线,这些都为后继学习奠定了基础。

  二、说目标

  1、知识目标:掌握“三角形内角和定理的证明”及其简单的应用。

  2、能力目标培养学生的数学语言表达、逻辑推理、问题思考、组内及组间交流、动手实践等能力。

  3、情感、态度、价值观:

  在良好的师生关系下,建立轻松的学习氛围,使学生体会获得知识的成就感及与他人合作的乐趣,以增强其数学学习的自信心。

  4、教学重点、难点

  重点:三角形的内角和定理的证明及其简单应用。

  难点:三角形的内角和定理的证明方法的讨论。

  三、说学校及学生现实情况

  我校是蓝田县一所普通初中,四面非山即岭,距蓝田县城四十里之遥。但由于国家对西部教育的.大力支持,学校有远程多媒体网络教室,为师生提供了良好的学习硬件环境。我校学生几乎全部来自本镇农村,而我所教授的八年级四班学生,大多家庭贫苦,所以学习认真踏实,有强烈的求知欲;此外,善于钻研是他们的特点,并且,有较强的合作交流意识。

  四、说教法

  根据本节课教学内容特点,我采用启发、引导、探索相结合的教学方法,使学生充分发挥学习主动性、创造性。

  五、说教学设计

  〈一〉、创设情景,直入主题

  一堂新课的引入是教师与学生活动的开始,而一个成功的引入,可使学生破除畏难心理,对知识在短时间内产生浓厚的兴趣,接下来的教学活动就变得顺理成章。我的具体做法是:简单回忆旧知识,“证明的一般步骤是什么?”学生轻松做答,我肯定之后紧接着说:“本节课就是用证明的方法学习一个熟悉的结论!是什么呢?请看大屏幕!”。尽量使问题简单化,这样更利于学生投入新课。

  〈二〉、交流对话,引导探索

  1、巧妙提问,合理引导

  证明思想的引入时,问:同学们,七年级时如何得到此结论?(留一定时间让他们讨论、交流、达成共识)学生回答后,我及时肯定并鼓励后抛出问题:他们的共同之处是什么?学生容易回答:凑成一平角。我说:很好!那你们用这样的思想能证明这个命题是个真命题吗?赶快试试吧!这样,既引导了证明的方向,又激发了学生的学习兴趣。接下来学生做题,我巡视。同时让一学生板演。

  2、恰当示范,培养学生正确的书写能力

  在学生做完之后,我与他们一道分析板演同学证明是否合理,并利用多媒体给出正确书写方法。

  3、一题多解,放手让学生走进自主学习空间

  正因为学生的预习,所以他们证明的方法有所局限,这时,我抛出问题:再想想,还有其他方法吗?将课堂时间又交还他们,将其思维推向高潮。学生思考,继而热烈讨论,此时,我又走到学生中去,对有困难的学生多加关注和指导,不放弃任何一个,同时,借此机会增进教师与学困生之间的情谊,为继续学习奠定基础。最后,请有新方法的同学叙述其思想方法,我用大屏幕展示不同做法的合情推理过程。

  4、展示归纳,合理演绎

  利用多媒体展示三角形内角和定理的几种表达形式,以促其学以致用。

  5、反馈练习

  用随堂练习来巩固学生所学新知,另一方面进一步提高学生的书写能力。同时,在他们作完之后,多媒体展示正确写法,加强教学效果。

  〈三〉、课堂小结

  1采用让学生感性的谈认识,谈收获。设计问题:

  2(1)、本节课我们学了什么知识?

  (2)、你有什么收获?

  目的是发挥学生主体意识,培养其语言概括能力。

  六、说华体会可以注销账号不

  本节课主要是以严谨的逻辑证明方法,验证三角形内角和等于180度。让学生充分体会有理有据的推理才是可靠的。而证明思想、书写的培养,是本节课的重点。自主学习、合作交流是新课程理念,也是我本节课的设计意图。从学生课堂表现可以看出,教学效果良好。而学生的一些出乎意料的做法让我倍感惊喜!把学生还给课堂,把课堂还给学生,也是我一贯的做法。

三角形的内角和教学设计5

  教学内容

  人教版小学数学第八册第五单元例5

  任务分析

  教材分析:

  《三角形的内角和》是义务教育课程标准实验教科书(数学)四年级下册第五单元《三角形》中的一个教学内容。这部分内容是在学生学习了角的度量,角的分类,三角形的认识,三角形的分类的基上进行教学的。它是三角形的一个重要性质,有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。教材通过实际操作,引导学生用实验的方法探索并归纳出这一规律,即任意一个三角形,它的内角和都是180度。教材在编写上也深刻的体现出了让学生探究的特点,通过动手操作探究发现三角形内角和为180度。教学内容的核心思想体现在让学生经历猜想—验证—结论的过程,来认识和体验三角形内角和的特点。

  学情分析:

  通过前面的学习,学生已经掌握了三角形的一些基础知识,会用工具量角、画角,具备了探索三角形内角和的知识与基础技能。在四年级上册《角的度量》的学习中,学生有接触到两把三角尺的内角和是180°;并在相关的补充习题和数学练习册的练习中,也有要求测量任意三角形的三个内角的度数并求出它们的和的练习,很多学生已经知道了三角形的内角和是180°。但是要真正理解和掌握需要进行验证,因此,学生在这节课上的主要任务是通过实验操作验证三角形的内角和是180°。

  教学目标

  1、通过实验、操作、推理归纳出三角形内角和是180°。

  2、能运用三角形的内角和是180°这一规律,求三角形未知角的度数并运用解决实际生活问题。

  3、通过拼摆,感受数学的转化思想。

  教学重点

  探究发现和验证“三角形的内角和180度”。

  教学难点

  验证三角形的内角和是180度。

  教学准备

  多媒体课件,锐角三角形、直角三角形、钝角三角形,剪刀,量角器等。

  教学过程

  一、复习旧知,学习铺垫

  1、一个平角是多少度?等于几个直角?

  2、如下图,已经∠ 1=35°,∠2=78°,求∠3是多少度?

  二、探究新知,理解规律

  1、说明三角形的三个内角和

  说出手中三角形的类型(锐角三角形,直角三角形,钝角三角形)并说出三角形有几个角?

  师(指出):三角形的这三个角叫做三角形的'三个内角,这三个内角的度数和叫做三角形的内角和。

  板书课题:“三角形的内角和”。

  揭示课题:今天我们一起来探究三角形的内角和有什么规律。

  2、探究三角形的内角和规律

  探究1:量一量,算一算

  以小组为单位,用量角器计算出三种三角形的内角和各是多少度?

  生讨论汇报,并引导学生发现:三角形的内角和接近180°。

  师:三角形的内角和接近180°,那它到底与180°有怎样的关系呢?

  学生预设:有学生可能会说出三角形的内角和就是180°,这时老师可以提问,为什么就是180°?我们要进行验证,你有什么办法呢?

  探究2:摆一摆,拼一拼

  引导:我们刚刚每个三角形都量了三次角,每一次度量都有误差,所以量出来的内角和有误差。能不能换一种方法减少度量的次数,减少误差呢?

  生可能很难想到,可以提示学生:把三个内角拼成一个角就只要量一次角。让我们一起动手做一做

  如图:

  锐角的三个内角拼成了一个平角,引导学生说出:锐角三角形的内角和是180°。

  让学生小组合作用同样的方法,发现:直角三角形的内角和也是180°。

  让学生独立用同样的方法,发现:钝角三角形的内角和也是180°。

  引导学生归纳:三角形的内角和是180°。

  是不是所有的三角形的内角和都是180°呢?(是,因为这三类三角形包括了所有三角形。)

  板书:三角形的内角和是180°

  三、巩固练习,应用规律

  1、在一个三角形中,∠1=140°,∠3=25°,你能求出∠2的度数吗?

  学生独立完成,并说出原因:因为三角形的内角和是180°,也就是∠1+∠2+∠3=180°,借助图像

  ∠2 =180°—∠1—∠3或∠2 =180°—(∠1+∠3)

  = 180°—140°—25° =180°—(140°+25°)

  =40°—25° =180°—165°

  =15° =15°

  2、一个等腰三角形的顶角是80°,它的两个底角各是多少度?

  学生分析:因为等腰三角形的两个底角相等,又因为三角形的内角和是180°,所以

  (180°—80°)÷2

  =100°÷2

  =50°

  四、拓展练习,深化规律

  1、求出下面各角的度数。

  2、判断

  (1)三角形任意两个内角的和大于第三个角。()

  (2)锐角三角形任意两个内角的和大于直角。()

  (3)有一个角是60°的等腰三角形不一定是等边三角形。()

  3、下面是两块三角形的玻璃打碎后留下的残片,你知道它们原来各是什么三角形吗?

  ()()

  五、课堂小结,分享提升

  1、谈谈这节课你有什么收获?

  2、课后思考题

  三角形的内角和是180°,那长方形、正方形的内角和呢?(根据三角形的内角和是180°求,参考课本88页第12题,完成89页16题)

三角形的内角和教学设计6

  学情分析:

  学生已经掌握了角的概念、角的分类和角的度量等知识。在本课之前,学生又掌握了三角形的稳定性研究了三角形的分类。这些都为进一步研究三角形内角和作了知识储备和心理准备,为本课内容的教学作了铺垫。三角形的内角和是三角形的一个重要性质。它有助于理解三角形的三个内角之间的关系,是进一步学习、研究几何问题的基础。

  教学目标:

  1、知识与技能:通过操作活动探索发现和验证“三角形的内角和是180度”的规律。

  2、过程与方法:通过量一量、剪一剪、拼一拼,培养学生的合作能力、动手实践能力,并运用新知识解决问题的能力。

  3、情感态度:使学生体验数学学习成功的喜悦,激发学生主动学习数学的兴趣。

  教学重点:

  探索发现和验证三角形的内角和是180度。

  教学难点:

  对不同探究方法的指导和学生对规律的灵活应用。

  教具准备:

  教师准备:多媒体课件、不同类形大小不一的三角形若干个、记录表

  学生准备:量角器、直尺、剪刀

  教学过程:

  一、激趣导入

  多媒体展示三角形

  出示谜语:形状似座山,稳定性能坚

  三竿首尾连,学问不简单?(打一图形名称)

  (预设:三角形)

  师:谁能介绍介绍三角形?

  (生1:三角形有三条边、三个顶点、三个角。

  生2:三角形按角分类,分为钝角三角形、锐角三角形、直角三角形。)

  师:你喜欢哪种三角形?(钝角三角形、锐角三角形、直角三角形)

  师:同学们会画三角形吗?请你在练习本上画一个你喜欢的三角形。

  师:钝角、直角、锐角三角形三兄弟吵起来了?我们快去看一看。

  师:今天我们就来研究一下三角形的内角和。

  二、学习目标

  1、通过动手操作,使学生理解并掌握三角形内角和是180度的结论。

  2、能运用三角形的内角和是180度这一规律,求三角形中未知角的度数。

  3、培养动手动脑及分析推理能力。

  三、自主学习(展示量角法)

  1、理解三角形的内角、内角和

  (1)板书展示三角形

  师:要想知道什么是三角形的内角和,我们得先知道什么是三角形的内角?(三角形里面的三个角都是三角形的内角。)

  师:你能过来指指吗?同意吗?内角有几个?

  师:为了研究方便,我们把三角形的三个内角分别标上∠1、∠2、∠3。

  师:你能像老师一样把你的三角形标上∠1、∠2、∠3吗?

  (2)三角形的内角和

  师:什么是三角形的内角和?

  (三角形三个角的度数的和,就是三角形的内角和,即:∠1+∠2+∠3)

  师:就是把∠1+∠2+∠3加起来。

  师:根据我们以前的经验,我们怎么知道∠1、∠2、∠3的度数呢?(预设:用量角器量)

  师:请同学们拿出量角器,量一量你画的三角形的三个内角,并算出他们的和。(4分钟)

  学生测量(1分40)汇报结果(5人)。

  教师填写测量汇报单。

  师:观察汇报的结果,你有什么发现?(所有三角形内角和度数不一样、三角形内角和都在180度左右)

  四、合作探究

  师:这是同学们亲自测量发现的,没有得到统一的结果,这个办法不能使人信服,有没有别的方法验证?老师给每个小组都提供了很多个三角形,现在请你们以小组为单位,拿出三角形来研究研究三角形的内角和到底是多少度。?(8分钟)(剪拼法)

  1、操作验证探索三角形内角和的.规律(6分钟)

  (1)操作验证:小组合作

  拿出装有学具的信封[信封里面有老师为学生事先准备的各种类型的三角形若干个(小组之间的三角形大小都不同)];拿出自备的直尺?剪刀

  (老师要给学生充裕的时间,保证学生能真正地试验,操作和探索,通过量一量、折一折、拼一拼、画一画等方式去探究问题。)

  2、学生汇报

  (1)转化法:

  生:两个同样的直角三角形可以拼成一个长方形,长方形每个直角都是90度,内角和就是360度,所以三角形的内角和就是360度的一半180度。

  师:他们用长方形的内角和来研究今天所学的知识,得到三角形的内角和是180度。

  (2)折拼法

  生:把三角形三个内角分别向下边折叠,拼成了一个平角,平角是180度,所以三角形的内角和是180度。

  师:他们是用折拼法验证三角形的内角和是180度(动手能力真强)

  (3)剪拼法

  生:把三角形三个内角撕下来,拼成一个平角,平角是180,所以三角形的内角和是180度。(师:提问怎样能很快的找到三个角?把他们做上标记。)

  标记上之后再拼一拼,可见标记的方法很科学。(20分钟)

  3、教师演示

  师:我们再来感受一下怎么验证三角形的内角和的?

  师:这是什么三角形?把他折一折。

  师:这是什么三角形?我们也可以把他折一折。你有什么发现?(折完以后都有一个平角,平角是180度,所以三角形的内角和是180度)

  师分别通过剪拼法验证直角三角形、钝角三角形、锐角三角形内角和。

  师:注意观察。

  师:演示完毕有什么发现?(预设这些三角形剪接后都拼成了平角)平角是180度,所以三角形的内角和是180度。

  师:刚刚我们研究了什么三角形。他们的内角和都是180度,那我们研究的这些三角形能不能代表所有的三角形,能。(因为三角形按角分类只能分成这三种。)(22分钟)

  4、演示任意一个三角形的内角和都是180度。

  出示一些三角形,让学生指出内角和。

  师:你有什么发现?(无论是什么样的三角形他的内角和都是180度,与三角形的形状大小没有关系。)(板书三角形的内角和是180度。)

  师:那我们再看看刚刚汇报的结果。为什么之前测量的时候并没有得到这样得到结果呢?(测量的不够精确,存在误差)

  师:如果测量仪器再精密一些,测量的更准确一些都可以得到三角形内角和是180度。现在确定这个结论了吗?(25分钟)

  师:除了这节课大家想到的方法,还有很多方法也能证明三角形的内角和是180°到初中我们还有更严密的方法证明三角形的内角和是180°。早在300多年前就有一位法国著名的科学家帕斯卡,他在12岁时就验证了任何三角形的内角和都是180°

  师:你们能用今天的发现做一些练习吗?

  五、测评反馈

  1、判断。

  (1)直角三角形的两个锐角的和是90°。

  (2)一个等腰三角形的底角可能是钝角。

  (3)三角形的内角和都是180°,与三角形的大小无关。

  4、剪一剪。

  把一个三角形纸板沿直线剪一刀,剩下的纸板的内角和是多少度?

  六、课后作业

  69页第1题、第3题。

  七、板书设计

三角形的内角和教学设计7

  【教学目标】

  1、通过“量、剪、拼”等活动发现、验证三角形的内角和是180°,并能运用这个知识解决一些简单的问题。

  2、在观察、猜想、操作、合作、分析交流等具体活动中,提高动手操作能力,积累基本的数学活动经验,发展空间观念和推理能力。

  3、在参与数学学习活动的过程中,获得成功的体验,感受数学探究的严谨与乐趣。

  【教学重点】

  探索发现、验证“三角形内角和是180°”,并运用这个知识解决实际问题。

  【教学步骤】

  一、复习旧知引出课题

  1、你已经知道有关三角形的哪些知识?

  2、出示课题:三角形的内角和

  设计意图:也自然导入新课。

  二、提出问题引发猜想

  1、提出问题:看到这个课题,你有什么问题想问的?

  2、引发猜想

  猜一猜:三角形的内角和是多少度?你是怎么猜的?

  设计意图:提出一个问题比解决一个问题更重要。课始在复习三角形已学知识后,引导学生提出有关三角形的新问题,让学生学习自己想研究的内容,无疑激发了学生的学习兴趣,培养了学生的问题意识。由于学生在平时使用三角板时已经若隐若现地有了特殊的直角三角形的内角和是180度这一感觉,因此本环节,要求学生猜一猜三角形的内角和是多少,并说说是怎么猜的,以激发学生已有知识经验,并体会到猜想要合理且有根据,同时也为推理验证的引出作必要的铺垫。

  三、操作验证形成结论

  1、交流验证方法:

  (1)用什么方法证明三角形的内角和是180度呢?

  预设:①量算法②剪拼法③折拼法等

  (2)三角形的个数有无数个,验证哪些三角形可以代表所有的三角形?我们的操作过程怎么分工才会做到省时又高效?

  2、动手验证

  3、全班汇报交流

  4、小结:刚才通过大家的动手操作验证了三角形的内角和是180°度。但动手操作会存在一定的误差,我们的`结论也可能存在偏差。

  5、方法拓展

  推理验证:用直角三角形的内角和来证明其他三角形内角和是180°的方法。

  6、形成结论:任意三角形的内角和是180°。

  设计意图:《标准》指出:“教师应激发学生的积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”猜测后先独立思考验证的方法,再进行全班交流,给学生充分的活动时间和空间,让学生动手操作,使学生在量、剪、拼、折等一系列操作活动中发现了三角形内角和是180°这个结论。在探索活动前,交流如何使研究样本具有代表性和全面性与如何分工做到操作省时高效这两个问题,培养学生严谨、科学正确的研究态度,让学生在活动中积累基本的数学活动经验,为后续的学习提供了经验支撑。

  四、应用结论解决问题

  1、巩固新知:想一想,算一算。

  2、解决问题:等腰三角形风筝的顶角是多少度?

  3、辨析训练,完善结论。

  五、课堂总结,归纳研究方法

  今天这节课你学到了哪些知识?你是怎样得到这些知识的?

  六、课后延伸:用今天所学的方法继续研究四边形的内角和。

  七、板书设计

  三角形的内角和

  猜测:三角形的内角和是180°?

  验证:量拼

  结论:任意三角形的内角和是180°

三角形的内角和教学设计8

  一、教材分析

  “三角形内角和”的度数推理是三角形中的一个重要环节,也是“空间与图形”领域中的重要内容之一,为学生进一步理解三角形三个角、三条边之间的关系打下基础。本节课首先让学生对三角形的特点进行复习,随后教材中创设了一个有趣的动态情境,导入了新课,激发学生的兴趣,明确“内角和”的含义,然后引导学生探索三角形内角和等于多少度,可以采用不同的方法验证,教学中安排了3个活动,通过这3个活动体验“三角形内角和”的性质和性质的探索过程。

  二、学情分析

  有的学生可能从各种渠道已经对“三角形内角和是180°”有所了解,所以本课的重点是通过数学活动体验,理解为什么三角形的内角和是180°,使学生对这个知识的掌握更深刻。经过不断的课改实验,孩子们已经有了一定的自主探究、合作交流的能力。他们喜欢在实践中感悟,在实践中发表自己的见解,对数学产生了浓厚的兴趣。

  1、知识方面:学生已经掌握了三角形的概念、分类,熟悉了钝角、直角、锐角、平角这些角的知识。

  2、能力方面:已具备了初步的动手操作能力和探究能力,并且能够进行简单的计算机操作。

  三、教学方法

  渗透猜想——验证——结论——应用——拓展

  教学目标:

  1、通过直观操作的方法,探索并发现三角形三个内角和等于180度,在实践活动中,体验探索的过程和方法

  2、能应用三角形内角和的性质解决一些简单的问题。

  教学重点:

  经历三角形的内角和是180°这一知识的形成、发展和应用的全过程,会应用三角形的内角和解决实际问题;

  教学难点:

  是探索和验证性质的过程。

  四、教具学具

  三角板、量角器、剪刀、白纸

  五、教学过程

  (一)、激趣导入,揭示课题

  1、师:同学们,猜猜它是谁?

  形状似座山,稳定性能坚,三竿首尾连,学问不简单(打一几何图形)三角形(板书)我们已经认识了什么是三角形,谁能说出三角形有什么特点?生回答。(互相补充)(课件演示三条线段围成三角形的过程)

  三条线段围成三角形后,在三角形内形成了三个角,(课件分别闪烁三个角及它的弧线),我们把三角形里面的这三个角分别叫做三角形的内角。

  2、现在,我们来玩一个跟三角形的角有关的游戏。只要大家说出三角形任意两个角的度数,老师就能猜出第三个角,你们相信吗?

  要求每个4人小组拿出本组预先准备的学具袋。(内含四个不同的三角形,包括直角、锐角和钝角三角形至少各一个,且要求大小不一。)

  3、活动——量一量:每人任意拿出一个自己带来的三角形,用量角器量出三角形中三个角的度数,并写在三角形中。(独立完成,非小组合作。)

  然后分别请几个学生报出不同三角形的两个角的度数,教师当即说出第三个角的度数。(事先向学生说明误差仅为3、4度左右。)

  你们知道老师是怎么猜出来的吗?

  到底它们之间有什么样的秘密呢?我们今天这节课就要来揭开这个秘密。

  (二)、动手操作,探究新知

  1、探究特殊三角形的内角和

  拿出两个三角板,问:它们是什么三角形?(直角三角形)

  请大家拿出自己的两个三角尺,在小组内说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。从刚才两个三角形内角和的计算中,你们发现了什么?

  (这两个三角形的内角和都是180°)。这两个三角形都是直角三角形,并且是特殊的三角形。

  【设计意图】三角板是学生非常熟悉的学习用具,度数也是非常清楚,通过计算学生熟悉的三角板内角和来验证这个结论,学生也容易接受。

  2、探究一般三角形内角和

  (1)猜一猜。

  猜一猜其它三角形的内角和是多少度呢?(可能是180°)

  (2)操作、验证一般三角形内角和是180°。

  所有三角形的内角和究竟是不是180°,你能用什么办法来证明?(可以先量出每个内角的度数,再加起来。)

  那就请小组共同计算吧!将学生采用分组的方法分成锐角三角形组、直角三角形组、钝角三角形组、等腰三角形组,各组在白纸上任意画三角形,并量出每个内角的.度数,计算三角形内角和。由组长统计记录员记录各组的内角和情况。

  (3)小组汇报结果。

  请各小组汇报探究结果。提问:你们发现了什么?

  小结:通过测量计算我们发现每个三角形的三个内角和都在180°左右。

  【设计意图】学生任意画的三角形,有大的、有小的,有各种类型的,不论是什么样的三角形,学生都亲自动手动笔算出内角和。这个探索过程简单学生又容易接受。

  3、操作验证

  (1)动手操作,验证猜测。

  没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?请同学们动脑筋想一想,能通过动手操作来验证吗?(先小组讨论,再汇报方法)

  (2)学生操作,教师巡视指导。

  (3)全班交流汇报验证方法、结果。

  学生放在投影仪上展示给大家看。(剪拼、撕拼、折拼)

  我们可以得出一个怎样的结论?(三角形的内角和是180°)

  引导学生通过剪拼、撕拼和折拼的方法发现:各类三角形的三个内角都可以拼成一个平角,证实三角形内角和确实是180°,测量计算有误差。

  【设计意图】学生通过亲自动手操作,将三角形的三个内角剪拼成一个平角,形象、直观地说明了“三角形内角和是180度”这个结论。

  5、辨析概念,透彻理解。

  (出示一个大三角形)它的内角和是多少度?

  (出示一个很小的三角形)它的内角和是多少度?

  一块三角尺的内角和180°,两块同样的三角尺拼成的一个大三角形的内角和又是多少呢?(学生有的答360°,有的180°、)

  把大三角形平均分成两份。每个小三角形的内角和是多少度?(生有的答90°,有的180°)这两道题都有两种答案,到底哪个对?为什么?(学生个个脸上露出疑问。)

  大家可以在小组内用三角尺拼一拼,也可以画一画,互相讨论。

  学生发现:三角形不论位置、大小、形状如何,它的内角和总是180°

  (三)小结

  刚才同学们用很多方法证明了无论是什么样的三角形内角和都是180°,现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是180°”。

  (四)、巩固练习,拓展应用

  下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。(课件)

  1、求三角形中一个未知角的度数。

  在三角形中,已知∠1=85°,∠2=65°,求∠3。

  2、判断

  (1)一个三角形的三个内角度数是:90°、75°、25°。()

  (2)一个三角形至少有两个角是锐角。()

  (3)钝角三角形的内角和比锐角三角形的内角和大。()

  (4)直角三角形的两个锐角和等于90°。()

  3、解决生活实际问题。

  (1)爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70°,它的顶角是多少度?

  (2)交通警示牌“让”为等边三角形,求其中一个角的度数。

  4、拓展练习。

  利用三角形内角和是180°,求出下面四边形、六边形的内角和?(课件)

  小组的同学讨论一下,看谁能找到方法。

  六、课堂总结

  通过这节课的学习,你有哪些收获?

三角形的内角和教学设计9

  【教材分析】

  《三角形内角和》是北师大版《数学》四年级下册的内容。是在学生学习了三角形的概念及特征之后进行的,它是掌握多边形内角和及其他实际问题的基础,因此,掌握“三角形的内角和是180度”这一规律具有重要意义。教材首先出示了两个三角形比内角和这一情境,让学生通过测量、折叠、拼凑等方法,发现三角形的内角和是180度。教材还安排了“试一试”,“练一练”的内容。已知三角形两个内角的度数,求出第三个角的度数。

  【学生分析】

  经过近四年的课改实验,孩子们已经有了一定的自主探究,合作交流的能力。他们喜欢在实践中感悟,在实践中发表自己的见解,对数学产生了浓厚的兴趣。1、知识方面:学生已经掌握了三角形的概念、分类,熟悉了钝角、直角、锐角、平角这些角的知识。2、能力方面:已具备了初步的动手操作能力和探究能力,并且能够进行简单的微机操作。

  【学习目标】

  知识目标:掌握三角形内角和是180度这一规律,并能实际应用。

  能力目标:培养学生主动探索、动手操作的能力。培养学生收集、整理、归纳信息的能力。使学生养成良好的合作习惯。

  情感目标:让学生体会几何图形内在的结构美。

  【教学过程】

  一、情景激趣,质疑猜想。

  播放动画片:在图形王国中,有一天三角形大家庭里为“三角形内角和的大小”爆发了一场激烈的争吵。

  钝角三角形大声叫着:“我的钝角大,我的内角和一定比你们的内角和大。”锐角三角形也不示弱:“我的锐角虽然比钝角小,但我的内角和并不比你小。”直角三角形说:“别争了,三角形的内角和都是180°。我们的内角和是一样大的。”

  师:想一想,什么是三角形的三个内角的和。

  生:三角形的三个内角的度数和。

  师:同学们刚才看了动画片你们知道谁说对了吗?不知道的话想一想,猜一猜谁说的对?

  学生进行猜想,自由发言。

  (设计意图:教师借助多媒体技术创设问题情境,架起数学学习与现实生活,抽象数学与具体问题之间的桥梁,激发了学生的学习兴趣。鼓励学生主动质疑猜想是培养学生学会学习的重要途径。)

  二、自主探究,验证猜想

  师:刚才大部分同学都猜直角三角形说的对。三角形的三个内角的和都是180°,你能设法验证这个猜想吗?

  生1:能。我量出三角形的三个内角和度数,加起来是否接近180°(量的时候可能会有些误差)。

  生2:我把三角形的`三个角剪下来拼一拼是否能拼成一个平角。

  生3:我把三角形的三个角撕下来,拼一拼是否180°。

  生4:我把三角形的三个角往里折,看一看这三个角是否折成一个平角。

  ……

  师:上面你们说了不少的验证猜想的方法,请大家用准备好的材料用你喜欢的方法,动手验证自己的猜想吧!(学生把三角形的三个内角分别标上∠1、∠2、∠3,以免在剪拼时把内角搞混了。)

  学生边实验边整理信息,完成实验报告单后,学习小组内进行交流讨论。

  (设计意图:验证猜想为学生提供了“做数学”的机会,让每个学生围绕自己的猜想、决定自己的探索方向、选择自己的方法,量一量、剪一剪、撕一撕、拼一拼、折一折,让学生在操作中自主探究数学知识的产生发展过程。验证自己的猜想,鼓励学生用不同的方法进行验证,促进学生创新能力的发展。)

  三、交流评价,归纳结论。

  学生操作验证,完成实验报告单后,利用投影仪展示学生填写的实验报告单。

  实验报告单

  实验名称

  三角形内角和

  实验目的

  探究三角形内角和是多少度。

  实验材料

  尺子

  剪刀

  量角器

  锐角三角形纸片

  直角三角形纸片

  钝角三角形纸片

  我的方法

  我的发现

  我的表现

  自评

  互评

  学生在展示过程中,充分交流和讨论实验中各自使用的方法和发现,教师要对学生的闪光点及时进行表扬和鼓励。

  师生共同归纳,得出结论:

  三角形内角和等于180°

  (设计意图:各学习小组汇报自己的验证过程,展示探究的成果。对学生探索发现的方法、策略进行总结归纳,集思广益,取长补短达到共识。在交流、归纳过程中,及时肯定其中的闪光点给予表扬和鼓励,使他们体验到成功的愉悦,促使他们获得更大的成功。)

  四、分层练习,巩固创新。

  ①课件出示:

  师:这个三角形是什么三角形?知道几个内角的度数?

  生:直角三角形,知道一个角是30°,还有一个角是90°。∠A=90°-30°=60°。

  师:根据今天所学的知识,谁能求出A的度数?大家自己试一试。

  学生做完后反馈讲评时让学生说说自己的方法。

  生1:用三角形内角的和(180°)减去30°再减去90°,算出∠A是60°。

  ∠A=180°-30°-90°=60°。

  生2:先用30°加上90°得120°再用180°减去120°也可得∠A=60°。

  ②学生完成完成P29的第一题。

  引导学生按照前面的方法独立完成,教师巡视,集体订正。

  ③猜一猜三角形的另外两个角可能各是多少度。

  同桌同学互相说一说。(答案不唯一)

  ④小组操作探究活动。

  让学生剪出几个不同的四边形,按表中所给的方法以做一做,并填一填。

  方法

  四边形内角和

  用量角器量出每个内角的度数,并相加。

  把四边形四个角剪下来,拼在一起。

  把四边形分为两个三角形。

  填表后让学生想一想、互相说一说,四边形内角和是多少度?

  (设计意图:引导学生将探究学习活动中所获得的结论经验和方法运用于探索解决简单的实际问题。组织学生参与具有趣味性、操作性和开放性的练习活动,让学生在巩固练习中培养动手能力、实践能力和创新思维。)

三角形的内角和教学设计10

  【教学内容】

  《人教版九年义务教育教科书数学》四年级下册《三角形的内角和》

  【教学目标】

  1、使学生知道三角形的内角和是180,并能运用三角形的内角和是180解决生活中常见的问题。

  2、让学生经历量一量、折一折、拼一拼等动手操作的过程。通过观察、判断、交流和推理探索用多种方法证明三角形的内角和是180。

  3、培养学生自主学习、互动交流、合作探究的能力和习惯,培养学习数学的兴趣,感受学习数学的乐趣。

  【教学重点】

  使学生知道三角形的内角和是180,并能运用它解决生活中常见的问题。

  【教学难点】

  通过多种方法验证三角形的内角和是180。

  【教学准备】

  课件。四组教学用三角板。铅笔。大帆布兜子。固体胶。剪刀。筷子若干。

  【教学过程】

  一、激趣导入,提炼学习方法

  1、课程开始,教师耳朵上别着一根铅笔,肩背大帆布兜子,里面装着一个量角器和几把缺了直角的三角板,手拿一张不规则的白纸,以一位老木匠的身份出现在学生面前。激发学生的好奇心。然后自述:“你们好,我是一个有三十多年工作经验的老木匠了。我收了三个徒弟,他们已经从师学艺三年了,今天我想让他们下山挣钱,可又不放心,想出几道题考验考验他们,又不知我的题合不合适,大家想不想先当一会我的徒弟试试这几道题呢?”

  2、继续以老木匠的身份说:前几天我造了一架柁,徒弟们能不能用我手中的工具验证一下横木和立柱是不是成直角的。

  3、选择工具,总结方法。

  让选择不同工具的同学用自己的方法验证。教师随机板书:量一量、拼一拼、折一折。

  师:你们真是爱动脑筋的好徒弟,那么请听好师傅的第二个问题。

  4、导入新课。

  图中有很多三角形,不论什么样的三角形都有三个角,这三个角就叫做三角形的内角,徒弟们能不能用学过的方法或者你喜欢的方法求一求三角形三个内角的和是多少?(板书课题:三角形的内角和)

  二、动手操作,探索交流新知

  1、分组活动,探索新知

  根据学生的选择把学生分成三组,分别采用量一量、折一折和拼一拼的方法探索新知。

  量一量组同学发给以下几种学具:

  折一折组同学发给上面的三角形一组。

  拼一拼组同学发给上面的三角形一组、剪刀一把还有下面这样的白纸一张。

  在学生探索的过程中教师要走近学生,与他们共同交流探讨,在学生有困难的时候要适当给予引导。

  2、多方互动,交流新知

  师:请我的大徒弟(量一量组)的同学先来汇报你们的研究成果。

  (1)首先要求学生说一说你们小组是怎样进行探究的。

  (2)说出你们组的探究结果怎样。(在此过程中教师不能急于纠正学生不正确的结论,因为这是知识的形成过程。)

  (3)请学生说说通过探究活动你们组得出的结论是什么。

  师:大徒弟就是大徒弟,汇报的真不错。二徒弟(折一折组)你们有没有更好的办法呢?

  引导这一组从探究的过程和结论与同学、老师交流。

  师:别看小徒弟(拼一拼组)这么小,方法可能是最好的。快来把你们的方法给大家汇报汇报。

  同样引导这一组从探究的过程和结论与同学、老师交流。

  3、思想碰撞,夯实新知

  师:三个徒弟你们能说说谁的方法最好吗?

  学生都会说自己的方法最好,再让其他同学发表自己的意见,此时生生之间,师生之间交流。(教师要引导学生说出量一量的方法可能由于量的`不够准确,所以结果可能比180大一些,或小一些。而其他两种方法没有改变角的大小,所以他们的是正确的。)

  师:不论你量的怎样认真都会有不准确的地方,这就叫误差。而其他两组同学的方法更准确。三角形的内角和就是180。(板书:三角形的内角和是180)

  四、走进生活,提升运用能力

  1、出示课前那架柁标出它的顶角是120,求它的一个底角是多少度?

  2、给你三根木条,能做出一个有两个直角的三角形吗?

  五、总结

  师:徒弟们你们经过三年的苦学,终于学有所成了。今天,能说说你们在我这里都学到了什么手艺吗?

  六、拓展新知,课外延伸

  师:俗话说“活到老,学到老。”你们下山后还要继续探索,所以我要把我毕生都没有完成的任务交给你们去研究。

  大屏幕出示:

  能用你今天学过的知识和方法探索一下四边形的内角和是多少度吗?

三角形的内角和教学设计11

  教学内容:

  本节课的教学内容是义务教育课程标准实验教科书数学四年级下册第五单位的第四课时《三角形的内角和》,主要内容是:验证三角形的内角和是180°等。

  教学内容分析:三角形的内角和是180是三角形的一个重要性质,它有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。

  教学对象分析:作为四年级的学生已有一定的生活经验,在平时的生活中已经接触到三角形,在尊重学生已有的知识的基础上和利用他们已掌握的学习方法,教师把课堂教学组织生动、活泼,突出知识性、趣味性和生活性,使学生能在轻松愉快的气氛中学习。

  教学目标:

  1、知识目标:学生通过量、剪、拼、摆等操作学具活动,找到新旧知识之间的联系,主动掌握三角形内角和是180°,并运用所学知识解决简单的实际问题。

  2、能力目标:培养学生的观察、归纳、概括能力和初步的空间想象力。

  3、情感目标:培养学生的创新意识、探索精神和实践能力,在学生亲自动手和归纳中,感受到理性的美。

  教学重点:

  理解并掌握三角形的内角和是180°。

  教学难点:

  验证所有三角形的内角之和都是180°。

  教具准备:

  多媒体课件、各种三角形等。

  学具准备:

  三角形、剪刀、量角器等。

  教学过程:

  一、出示课题,复习旧知

  1、认识三角形的内角。

  (1)复习三角形的概念。

  (2)介绍三角形的“内角”。

  2、理解三角形的内角“和”。

  【设计理念】通过复习三角形的概念的过程,不仅可以巩固学生的旧知识而且可以为新知识教学提供知识铺垫。

  二、动手操作,探究新知

  1、通过预习,认识结论,提出疑问

  2、验证三角形的内角和

  (1)用“量一量、算一算”的方法进行验证

  ①汇报测量结果

  ②产生疑问:为什么结果不统一?

  ③解决疑问:因为存在测量误差。

  (2)用“剪一剪、拼一拼”的方法进行验证

  ①指导剪法。

  ①分别拼:锐角三角形、直角三角形、钝角三角形。

  ③验证得出:三角形的.内角和是180°。

  (3)用“折一折”的方法进行验证

  ①指导折法。

  ①分别折:锐角三角形、直角三角形、钝角三角形。

  ③再次验证得出:三角形的内角和是180°。

  3、看书质疑

  【设计理念】此过程采用直观教学手段。通过让学生动手量、拼等直观演示操作直接作用于学生的感官,激活学生的思维,有助于学生的认识由具体到抽象的转化。从而明确三角形的内角和是180°。

  三、实践应用,解决问题:

  1、在一个三角形中,∠1=140°,∠3=25°,求∠2的度数。

  2、求出三角形各个角的度数。(图略)

  3、爸爸给小红买了一个等腰三角形的风筝。它的一个底角是70°,它的顶角是多少度?

  4、根据三角形的内角和是180°,你能求出下面的四边形和正六边形的内角和吗?(图略)

  5、数学游戏。

  【设计理念】练习设计的优化是优化教学过程的一个重要方向,所以在新授后的巩固练习中注意设计层层递进,既有坡度、又注意变式,更有一练一得之妙,从而使学生牢固掌握新知。

  四、总结全课、延伸知识:

  1、今天你们学到了哪些知识?是怎样获取这些知识的?你感觉学得怎样?

  2、知识延伸:给学生介绍一种更科学的验证方法——转化。

  【设计理念】课堂总结不仅要关注学生学会了什么,更要关注用什么方法学,要有意识的促进学生反思。

  板书设计:三角形的内角和是180°

  方法:①量一量拼角(略)

  ②拼一拼

  ③折一折

  【设计理念】此板书设计我力求简明扼要、布局合理、条理分明,体现了简洁美和形象美,把知识的重点充分地展现在学生的眼前,起了画龙点睛的作用。

三角形的内角和教学设计12

  教学目标:

  1、让学生通过量、剪、拼、折等活动,主动探究推导出三角形内角和是180度,并运用所学知识解决简单的实际问题。

  2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透"转化"数学思想。

  3、在学生亲自动手和归纳中,使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

  教学重点:

  让学生经历"三角形内角和是180°"这一知识的形成、发展和应用的全过程。

  教学难点:

  通过小组内量一量、折一折、撕一撕等活动,验证"三角形的内角和是180°。"

  教师准备:

  4组学具、课件

  学生准备:

  量角器、练习本

  教学过程:

  一、兴趣导入,揭示课题

  1、导入:"同学们,这几天我们都在研究什么知识?能说说你们都认识了哪些三角形吗?它们各有什么特点?"

  (生出示三角形并汇报各类三角形及特点)

  2、今天老师也带来了两个三角形,想不想看看?(播放大屏幕)。"咦,不好,它们怎么吵起来了?快听听它们为什么吵起来了?""哦,它们为了三个内角和的大小而吵起来。"(设置矛盾,使学生在矛盾中去发现问题、探究问题。)

  3、我们来帮帮它们好吗?

  4、那么什么叫内角啊?你们明白吗?谁来说说?来指指。

  你能标出三角形的三个角吗?(生快速标好)

  数学中把三角形的这三个角称为三角形的内角,三个内角加起来就叫内角和。这节课我们就来研究一下"三角形的内角和"(课件片头1)

  "同学们,用什么方法能知道三角形的内角和?"

  二、猜想验证,探究规律(动手操作,探究新知)

  1.量角求和法证明:

  先听合作要求:拿出准备的一大一小的两个三角形,现在我们以小组为单位来量一量它们的内角,注意分工:最好两个人量,一人记录,一人计算,看哪一小组完成的好?

  (1)学生听合作要求后分组合作,将各种三角形的内角和计算出来并填在小组活动记录表中。(观察哪组配合好)。

  (2)指名汇报各组度量和计算内角和的结果。

  (3)观察:从大家量、算的结果中,你发现什么?

  归纳:大家算出的三角形内角和都等于或接近180°。

  (5)思考、讨论:

  通过测量计算,我们发现三角形的内角和不一定等于180度,因为是测量所以能有误差,那么还有更好的方法能验证呢?

  大家讨论讨论。

  现在各小组就行动起来吧,看哪些小组的方法巧妙。看看能得出什么结论?

  看同学们拼得这样开心,老师也想拼拼,行吗?演示课件。

  看老师最终把三个角拼成了一个什么角?平角。是多少角?

  "180°是一个什么角?想一想,怎样可以把三角形的三个内角拼在一起?如果拼成一个180度的平角就可以验证这个结论,对吗?"(课件3)

  现在,我们可验证三角形的内角和是(180度)?

  2、那么对任意三角形都是这个结论?请看大屏幕。

  演示锐角三角形折角。(三个顶点重合后是一个平角,折好后是一个长方形。)

  你们想不想去试一试。

  1、小组探究活动,师巡视过程中加入探究、指导(如生有困难,师可引导、有可能出现折不到一起的情况,可演示以帮助学生)

  2、"你通过哪种三角形验证(钝角、锐角、直角逐一汇报)",生边出示三角形边汇报。(如有实物投影,直接在实物投影上展示最好,也可用大三角形示范,可随机改变顺序)

  a、验证直角三角形的'内角和

  折法1中三个角拼在一起组成了一个什么角?我们可以得出什么结论?

  引导生归纳出:直角三角形的内角和是180°

  折法2们还可以得出什么结论?

  引导生归纳出:直角三角形中两个锐角的和是90°。

  (即:不必三个角都折,锐角向直角方向折,两个锐角拼成直角与直角重合即可)

  b、验证锐角、钝角三角形的内角和。

  归纳:锐角、钝角三角形的内角和也是180°。

  放手发动学生独立完成,逐一种类汇报师给予鼓励

  三、总结规律

  刚才,我们将直角三角形、锐角三角形、钝角三角形的三个内角量、剪、撕,能不能给三角形内角下一个结论呢?(生:三角形的内角和是180°)对!不论是哪种三角形,不论大小!我们可以得出一个怎样的结论?

  (三角形的内角和是180°。)

  (教师板书:三角形的内角和是180°学生齐读一遍。)

  为什么用测量计算的方法不能得到统一的结果呢?

  (量的不准。有的量角器有误差。)

  老师的大三角形内角和大小三角形内角和大呀?(一样大)首尾呼应

  四、应用新知,知识升华。

  (让学生体验成功的喜悦)

  现在,我们已经知道了三角形的内角和是180°,它又能帮助我们解决那些问题呢?

  (课件5……)

  在一个三角形中,有没有可能有两个钝角呢?

  (不可能。)

  追问:为什么?

  (因为两个锐角和已经超过了180°。)

  有两个直角的一个三角形

  (因为三角形的内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。)

  问:那有没有可能有两个锐角呢?

  (有,在一个三角形中最少有两个内角是锐角。)

  1、看图求出未知角的度数。(知识的直接运用,数学信息很浅显)

  2、做一做:

  在一个三角形中,∠1=140度,∠3=35度,求∠2的度数、

  3、27页第3题(数学信息较为隐藏和生活中的实际问题)

  4.思考题、

  五、总结

  今天,我们在研究三角形的内角和时经历了猜想、验证、得出结论的过程,并且运用这一结论解决了一些问题。人们在进行科学研究中,常常都要经历这样的过程,同时,它也是一种科学的研究方法。

  板书设计:

  三角形内角和

  量一量拼一拼折一折

  三角形内角和是180°

【三角形的内角和教学设计】相关文章:

三角形内角和教学设计01-18

小学数学《三角形内角和》教学设计12-30

《三角形的内角和》华体会可以注销账号不 03-11

三角形的内角和华体会可以注销账号不 02-19

《三角形的内角和》华体会可以注销账号不 07-11

《三角形内角和》数学华体会可以注销账号不 06-30

《三角形的内角和》华体会可以注销账号不 15篇08-28

《多边形的内角和》华体会可以注销账号不 03-06

同位角、内错角、同旁内角教学设计01-10

人教版四年级下册三角形的内角和说课稿12-06

Baidu
map