- 相关推荐
数学面积计算教学设计
作为一名人民教师,通常需要用到教学设计来辅助教学,借助教学设计可以促进我们快速成长,使教学工作更加科学化。那么问题来了,教学设计应该怎么写?以下是小编帮大家整理的数学面积计算教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。
数学面积计算教学设计1
教学目标
1、在学生理解的基础上掌握平行四边形面积计算公式,能正确地计算平行四边形的面积。
2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生初步知道转化的思考方法在研究平行四边形面积时的运用。
3、培养学生的分析、综合、抽象、概括和解决实际问题的能力。
教学
重难点
教学重点:理解并掌握平行四边形的面积公式
教学难点:理解平行四边形面积公式的推导过程
课前准备
多媒体课件
教学过程
师生活动
思考与调整
一、复习导入:
1、说出学过的平面图形。
2、在这些图形中,哪些图形的面积你会求?
二、探究新知:
1、教学例1:
(1)出示例1中的第1组图
要求:下面的两个图形面积是否相等?在小组里说一说你准备怎样比较这两个图形的面积。(学生分组活动后组织交流)
(2)出示例1中的`第2组图
要求:不用刚才的方法还能比较这两个图形的大小吗?(学生交流,教师适当强调“转化”的方法。)
(3)揭示课题:
师:今天我们运用已学过有关知识运用转化的数学思想来研究新图形的面积计算公式。今天我们来研究“平行四边形面积的计算”。(板书课题)
2、教学例2:
(1)出示一个平行四边形
师:你能想办法把这个平行四边形转化成学过的图形吗?
(2)学生操作,教师巡视指导。
(3)学生交流操作情况
第一种:①沿着平行四边形的高剪下左边的直角三角形。
②把这个三角形向右平移。
③到斜边重合。
第二种:①沿着平行四边形的任意一条高将其剪为两个梯形。
②把左侧的梯形向右平移。
③道斜边重合。
(4)教室用课件进行演示并小结。
师:沿着平行四边形的任意一条稿剪开,再通过平移,都可以把平行四边形转化成一个长方形。
师生活动
思考与调整
(5)小组讨论:
①转化后长方形的面积与原平行四边形面积相等吗?
②长方形的长与平行四边形的底有什么关系?
③长方形的宽与平行四边形的高有什么关系?
(6)学生总结,形成下面的板书:
长方形的面积=长X宽
平行四边形的面积=底X高
3、教学例3:
(1)提问:是不是任意一个平行四边形都能转化成长方形?都能推导出平行四边形的面积公式呢?请大家从教科书第123页上任选一个平行四边形剪下来,先把它转化成长方形,再求出面积并填写下表。
转化后的长方形
平行四边形
长(cm)
宽(cm)
面积(cm)
底(cm)
高(cm)
面积(cm)
(2)学生操作,反馈交流。
(3)用字母表示面公式:S=ah(板书)
三、巩固练习:
1、指导完成试一试:明确应用公式求平行四边形的面积一般要有两个条件,即底和高。
2、指导完成练一练:强调底和高的对应关系。
四、总结:
师:通过今天的学习有哪些收获?
板书设计:平行四边形面积的计算
转化
已学过的图形新图形
割补、剪拼
因为长方形的面积=长×宽
所以平行四边形的面积=底×高
数学面积计算教学设计2
教学目标:
1、巩固平行四边形、三角形、梯形、圆的面积公式及推导过程。 2、弄清各图形面积之间的联系,熟练掌握面积公式。 3、灵活运用割补法、拼全法解决组合图形的面积计算问题。 4、在知识的运用与迁移中让学生感受到数学的乐趣。 教学方法:
探究式学习、闯关式练习
教学准备:
各种平面图形和组合图形卡片
教学过程:
一、课前交流
师生互问候并提出本课时教学期望及要求——智勇闯三关。
二、热身活动
1、出示各种平面图形,请同学说说用字母表示的面积公式。
2、说说平行四边形、三角形的面积推导过程。
(渗透各图形的面积计算过程中切割法和移补法运用的数学思想)
三、第一关
1、出示图形
A B
2、解析题目
A图:割补成一个长方形和一个圆。(长方形面积加上圆的面积)
B图;切割成一个正方形和半个圆。(正方形的面积加上半个圆的面积) 3、出示数据,学生任选一题进行计算。 4、做好的自行上台演板,再全班交流、评析。
5、小结闯关情况,体验闯关成功的喜悦,激发闯关斗志。
四、第二关
1、出示图形(求阴影部分的面积)
A B
2、解析题目
A图:割补成一个梯形和一个三角形(梯形面积减去三角形面积) B图:移补成一个长方形。(长和宽都要减去空白处的宽度)
3、出示数据(A图梯形上底20㎝,下底40㎝),学生任选一题进行计算。
4、做好的自行上台演板,再全班交流、评析。
5、小结闯关情况及闯关成功诀窍,体验闯关成功的喜悦同时充分准备应对下一关的挑战。
五、第三关
1、出示图形,引导学生展开空间想象,刚才两关都是利用割补法把组合图形切割、移补成我们学过的平面图形再进行面积计算,那这两颗星形图又是从怎样的图形中割取下来的呢? A B
2、解析题目,并出示下图。
A图用三角形的面积减去半个圆的面积。 B图用正方形的面积减去一个圆的'面积。
3、出示数据(A图三角形的底是20㎝,高是17㎝;B图正方形的边长是40dm),学生任选一题进行计算。
4、指名叫刚才想象出的同学上台演板,再全班交流、评析。
5、小结闯关情况,体验闯关成功的喜悦,鼓励学生大胆想象,学会运用所学知识解决数学问题。
六、全课总结
全班归纳闯关心得,并以此激发学生的学习数学的热情及优化学生的数学思想。
反思:
因为我运用了学生喜闻乐见的闯关形式开展本节练习课,故而课堂气氛活跃,学生学习积极性高。为了让全体学生都参与其中且体验到成功的喜悦之情,我设计了由易到难的三关,让学生运用所学知识经历一个推进、巩固、深化的过程。而且都是全班先交流解题思路,再任选一题进行计算,如此时间上也易掌控,又照顾到了那些学困生。整堂课下来,统计后发现有四分之三以上的同学闯过了三关。
数学面积计算教学设计3
教材分析
1、课标分析:《数学课程标准》提出:“要让学生在参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些体验。”所谓体验,从教育的角度看,是一种亲历亲为的活动,是一种积极参与活动的学习方式。本节课的设计充分利用学生已有的生活经验,把这一学习内容设计成实践活动,让学生在自主探究合作学习中理解平行四边形面积的计算公式,并了解平行四边形与其他几种图形间的关系,让学生经历学习过程,充分体验数学学习,感受成功的喜悦,增强信心,同时培养学生思维的灵活性,与他人合作的态度以及学习数学的兴趣。
2、教材分析: 《平行四边形的面积》是义务教育课程标准实验教材五年级上册第五单元第一课时的内容。该内容是在学生已学会长方形、正方形的面积计算,已掌握平行四边形的特征,会画平行四边形的底和对应的高的基础上教学的。通过本节课的学习,能为学生推导三角形、梯形面积的计算公式提供方法迁移,同时也为进一步学习立体图形的表面积做了准备。 由于学生已掌握了长方形的面积计算公式,所以当学生掌握了割补法,把平行四边形转化成长方形之后,平行四边形面积的计算公式就自然而然的产生了。本节课的教学不仅培养了学生的观察比较、分析综合的能力,还培养了学生动手操作、探索创新的能力,是学习多边形面积计算,掌握转化思想的起始内容。
学情分析
五年级学生正处在形象思维和逻辑思维过渡时期。他们有了一定空间观念和逻辑思维能力。但对于理解图形面积计算的公式推导和描述推导的过程还是有难度的。这就需要教师利用生动形象的教学媒介让学生去参与、去操作、去实践,才能让学生通过体验,掌握规律,形成技能。这节课中生动形象的多媒体有助于学生将这些抽象的事物转化为易于理解、易于接受的事物,多媒体的使用在教学中起到了不可替代的作用。
教学目标
(1)使学生通过探索理解和掌握平行四边形的面积公式,会计算平行四边形的面积。
(2)通过操作,观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。
(3)培养学生学习数学的兴趣及积极参与、团结协作的精神。
教学重点和难点
教学重点:使学生通过探索、理解和掌握平行四边形的面积、计算公式、会计算平行四边形的面积。
教学难点:通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形间的联系,推导出平行四边形的面积公式。
教学过程
一、情感交流
二、探究新知
1、旧知铺垫
(1)、说出平面图形名称并对它们进行分类。
(2)、计算正方形、长方形的面积。(强调长方形面积计算公式)
设计目的:从学生熟悉的知识点入手,能够降低门槛顺理成章的引入新知识。
2、 导入新课
3、 探究平行四边形面积计算方法。
(1)、在方子格中数出长方形的`面积。
(2)、在方子格中数出平行四边形的面积(不满一格的按半格计算)。要求学生说出平行四边形对应的底和高。
(3)、通过观察表格,试着猜测平行四边形的面积计算方法。
(4)、共同探讨如何计算平行四边形的面积。
①出示平行四边形,引导学生明确其底和高。
②学生在学具上标明其底并画出对应的高。
③讨论:能否把平行四边形转化为已学过的平面图形再计算(保证面积不会发生变化)
④小组交流如何操作的。(割补法)
⑤学生代表汇报各组的操作方法以及得到的结论。
⑥幻灯片演示割补的过程。
⑦引导学生归纳平行四边形面积计算公式。(让学生明确算平行四边形面积的必须条件)
4、 课堂小练笔。
设计目的:达到让学生动手操作,从实践中掌握知识,并能够从实践中总结知识。让学生明白知识来源于生活,又用于生活。
三、课堂练习
四、小结本课
五、课堂作业
板书设计
平行四边形 面积 = 底 × 高
长方形 面积 = 长 × 宽
S表示平行四边形的面积 a表示底 h表示高
S=a×h s=a.h S=ah
数学面积计算教学设计4
教材简析:这部分教材主要是通过把几个相同的正方体或长方体拼成较大的长方体的操作活动,探索并发现拼接前后有关几何体表面积的变化规律,并让学生应用发现的规律解决一些简单实际问题。
教学目标:
1、让学生通过把几个相同的正方体或长方体拼成较大的长方体的操作活动,探索并发现拼接前后有关几何体表面积的变化规律,并让学生应用发现的规律解决一些简单实际问题。
2、让学生应用发现的规律解决一些简单实际问题。
3、养学生的合作能力、空间想象能力和思维能力。
教学重点与难点:通过操作,比较拼成的长方体的表面积与原来两个正方体的表面积的和究竟发生了什么,发现规律,学会分析。
教学准备:
1、课前把全班同学合理分组,并明确分工,强调合作。
2、以小组为单位,每小组准备8个1立方厘米的正方体,2个完全相同的长方体,以及10盒同样的火柴盒。
教学过程:
一、拼拼算算
1、教师演示:把两个体积是1立方厘米拼成一个长方体。
提问:体积有没有变化?
学生观察、交流、讨论(可以计算、可以用肉眼观察)鼓励方法的多样性。
小结:把2个体积是1立方厘米的正方体拼成一个长方体,体积没有发生变化。
追问:把3个体积是1立方厘米的正方体拼成一个长方体,体积有没有发生变化?
再次小结:同样大小的正方体拼成一个长方体,体积不发生变化。
2、课件再次演示:把两个体积是1立方厘米拼成一个长方体。
提问:表面积有没有发生?
让学生通过拼一拼,计算或观察的方法来发现,在小组讨论,再集体交流。
组织交流:A两个同样大小的正方体拼成长方体,表面积发生变化了吗?
B拼成长方体后表面积是增加了还是减少了?
C那么具体减少的是哪几个面的面积呢?(请学生指指摸摸)明确表面积减少了原来2个正方形面的面积,即减少了2平方厘米。
3、深入探究:
课件演示操作要求:
(1)、如果用3个、4个正方体拼成长方体,表面积又发生了什么变化呢?(排法要求是排成一排)
(学生自己猜想、操作、探究、验证)
提醒学生把相关数据及时填在表中。并交流填写结果。
(2)、当正方体增加到5个6个时,表面积会怎么变化呢?
学生先猜想,再通过拼一拼来验证。
(3)、发现规律:你能联系操作和填表的过程提出自己发现的规律吗?
给予充分时间让学生讨论。
交流(可以有多种表述,只要符合题意即可)
“从最简单的体积变了,表面积变了,或每一种具体拼法减少了哪两个面的面积都是可以的。”
4、小组动手操作,用老师给你们准备的2个相同长方体拼成三个不同的大长方体,你有什么发现?
(1)、学生操作探究讨论。
交流:“体积没有变,表面积变了。”“都比原来减少了2个面的面积,但不同的拼法减少的'面积就不同。(交流时课件演示三种不同的拼法)
(2)、你能看出哪个大长方体的表面积最大,哪个最小吗?(学生交流讨论)
(3)、怎么验证你的发现呢?(引导学生通过计算验证自己的发现)
小结:不管怎样拼,每次都会减少两个长方形面的面积;而减少的面积越少,拼成的大长方体的表面积就越大。
二、拼拼说说
1、课件演示:用6个体积是1立方厘米的正方体可以拼成不同的长方体
问:哪个长方体的表面积?大多少?
学生观察,并动手拼一拼,再体积讨论交流,交流时请学生说说你是怎么想的。
(教师应侧重引导学生应用前面发现的规律,并通过对拼成的每个长方体的具体分析得出。)
2、拼10包火柴盒,包成一包有几种包法?怎样包装最节省包装纸。
学生分组操作讨论交流。
教师引导学生具体分析每一种包装方法,并适当说明理由。
“怎样包装最省纸”就是什么最少?(拼成的长方体的表面积最小)
怎样拼最少呢?(5盒叠一起,并排两叠)
三、全课小结
通过这节实践活动课,你知道了什么?
数学面积计算教学设计5
教学内容:教材第5~6页例2、例3和“练一练”,练习一第4—8题。
教学要求:
1.使学生理解和掌握圆柱体表面积的计算方法,能根据实际情况正确地进行计算,培养学生解决简单的实际问题的能力。让学生认识取近似值的进一法。
2.进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。
教具学具准备:教师准备一个圆柱模型(表面要有可揭下各个部分的一层纸);学生准备一个圆柱体。
教学重点:掌握圆柱侧面积的计算方法。
教学难点:能根据实际情况正确地进行计算。
教学过程:
一、复习铺垫
1.复习圆柱的特征。提问:圆柱有什么特征?
2.计算下面圆柱的侧面积(口头列式):
(1)底面周长4.2厘米,高2厘米。
(2)底面直径3厘米,高4厘米。
(3)底面半径1厘米,高3.5厘米。
3.提问:圆柱的一个底面面积怎样计算?
4.引入新课。
我们已经会计算圆柱的侧面积,那么怎样计算圆柱的表面积呢?这节课就学习圆柱的表面积计算,(板书课题)
二、教学新课
1.认识表面积计算方法。
(1)请同学们拿出圆柱来看一看,想一想圆柱的表而包括哪几个部分,然后告诉大家。指名学生拿出圆柞,边指边说明它的表面包括哪几个部分。
(2)教师演示。
出示教具,说明把表面全部展开,看一看得到什么图形,和大家说的对不对。揭下圆柱表面的纸,贴在黑板上,再与圆柱对比说明各个部分,明确圆柱表面包括一个侧面和两个相等的圆。
(3)得出公式。
请同学们看着表面展开的图形说一说,圆柱的表面积应该怎样计算?(板书:圆柱的表面积:侧面积+两个底面积)追问:圆柱的侧面积怎样算?圆柱的一个底面积怎样算?
2.教学例2。
出示例2,学生读题。提问:这道题分哪几步来算?你们会做吗?指名一人板演,其余学生做在练习本上。集体订正,让学生说说每一步的具体含义,是怎样算的。
3.组织练习。
做“练一练”第1题。指名两人板演,其余学生做在练习本上。集体订正,说说这两题计算时有什么不同的'地方,为什么?指出:计算圆柱的表面积,要注意题里的条件,正确列出算式计算。
4.教学例3。
出示例3,学生读题。提问:这道题实际是求什么?这里求表面积与例2有什么不同,为什么?(只要用侧面积加一个底面积)指名学生板演,其余学生做在练习本上。集体订正,追问为什么只加一个底面积。强调不用四舍五入法及其理由,说明用进一法,并让学生说明结果的近似值,板书订正。
5.组织练习。
(1)下面的数用进一法保留整数,各是多少?(口答)
162.3 29.4 3.8 42.6
(2)做“练一练”第2题。让学生做在练习本上。指名口答前两步各求什么,怎样算的。(老师板书算式)提问:第三步要怎样算,为什么只加一个底面积。
三、课堂小结
这节课学习子什么内容?你学到了些什么?指出:求圆柱表面积在实际应用中,要注意题里的实际情况,弄清什么时候要侧面积加两个底面积,什么时候要侧面积加一个底面积,什么时候只要求侧面积,然后计算结果。另外,在求需要材料取近似数时,一般要用进一法。
四、布置作业
课堂作业:练习一第5~7题。
家庭作业:练习一第4、8题。
数学面积计算教学设计6
教学目标:
1、经历探索长方形、正方形面积计算方法的过程,并总结出长方形和正方形面积计算公式。
2、掌握长方形、正方形面积计算公式,能运用公式正确地计算长方形和正方形的面积。
3、了解长方形和正方形面积计算在实际生活中的应用,体会数学的价值。
4、结合长方形和正方形面积计算培养学生的探索精神、空间观念和解决问题的能力。
教学过程:
1、课前游戏:考考你的观察力。
2、动画引入:
蓝猫三千问,08年什么大事?森林里举行运动会。从这幅图中你看到了哪些熟悉的图形?
生:长方形和正方形。
蓝猫:这两个场地的面积有多大?
师:有哪些办法?
生1:用面积单位去摆。
生2:可以计算。用长乘宽,我是预习的。
师:你能从摆面积单位的过程中,发现面积计算的方法吗?我们今天来研究。
板书:长方形、正方形面积的计算。
3、主动探究
(1)提供生:透明方格纸、1平方厘米正方形纸块、尺子和一张印有六个图形的纸。
师:请自己选择材料和工具,想办法求出六个图形的面积,并把数据记录下来。
作业纸:
长度单位:厘米
1号图(横放):长5宽32号图(竖放):长4宽2
3号图:正方形边长24号图:正方形边长3
5号图(横放):长4宽16号图(横放):长6宽4
(2)学生个体活动,然后小组交流。
师:每人在组内交流你选择了什么图形,用什么方法得到了面积。小组内选择一人记录,一人汇报。
汇报:
第1组:用透明小正方形纸覆盖在2号图形上,2号图形是长4宽2,有8个小正方形,所以它的面积是8平方厘米。再覆盖在6号图形上,6号图形是长6宽4,有24个小正方形,所以它的面积是24平方厘米。
同时另一生记录在黑板上。
师:你们觉得这种方法怎么样?
生:很简单。
师:也是这样做的举手,有不同的吗?
第2组:用小正方形摆在第1个图形上,横着摆一排5个,竖着摆了3个,一共要摆15个小正方形,面积是15平方厘米,同样方法摆第4个图形。
师:(指图1)为什么只摆7个?
生:因为一排5个,竖着摆3排就行了。
第3组:用尺子画图1格子,长是5画5格,宽是3画3行,一共是15个小正方形,面积是15平方厘米。
师小结:刚才用透明小方格去量,用尺子画格子、用小正方形去摆,知道了这些图形的面积。
(3)比较这些方法,有什么相同的地方?
生:都是数方格的.。
师小结:长是几,就是有几个这样的面积单位,宽是几,就有几排这样的面积单位,长方形面积就是含有面积单位的个数。
(4)长方形面积单位和什么有关?又有什么关系?
生:长方形面积与长和宽有关。
师:能结合操作中的数据,说说它们之间有什么关系?
生:1号图形长是5厘米,宽是3厘米。面积有3个5是15平方厘米。
2号图形长是4厘米,宽是2厘米,面积是8平方厘米。
3号图形长是3厘米,宽是3厘米,面积是9平方厘米……
师:这些都说明了什么?
生:正方形是特殊的长方形。
师:都说明了?
生:长方形面积是长乘宽。
师:长方形面积所含的平方厘米数正好是长和宽所含厘米数的积。
请生闭眼想象,长是7厘米,宽是3厘米,面积多少平方厘米?
长8米,宽5米,面积多少平方米?
师:长方形面积可以怎样计算?
生:长乘宽(师板书)
师:正方形面积怎样算?
生:正方形面积等于边长乘边长。
师:你怎么想的?正方形面积为什么等于边长乘边长?
生:因为正方形的四条边一样长。
师:正方形是长、宽相等的特殊的长方形。面积也可以用长乘宽,也就是边长乘边长(板书)
集体朗读公式。
3、生活中的应用
(1)计算长方形面积要知道什么条件?要求正方形面积呢?
图:举重场、田径场(无数据)
师:要计算这两个场地的面积,要知道什么?
生:长和宽边长
图:两块场地出现数据。田径场:长50米,宽30米举重场:边长8米
生计算。汇报:
生1:举重场面积64平方米,8乘8=64生2:50乘30=1500平方米
(2)长方形和正方形在生活中随处可见。
图:篮球场P99--5求面积。长28米,宽15米生汇报。
(3)奖品:蓝猫书签
师:书签是什么形状?估计面积大约多少平方厘米?
生1:大约是48平方厘米。生2:这个书签大约是45平方厘米。
师:你怎么想的?生:长9厘米,宽是5厘米。
师:你为什么先估计它的长和宽?生:知道长和宽,就能估出面积。
请生测量书签长和宽,计算面积。汇报;长是12,宽是4,12乘4=48平方厘米
(4)主席台背景图:每个小正方形边长是2米。算背景图面积。
生1:将小正方形下移得到长,左移得到宽。
生2:画出长方形长和宽的格子。
4、本节课你有什么收获?
数学面积计算教学设计7
一、教学目标
1、复习巩固各种图形面积的计算方法,明确组合图形是由几个简单图形组合而成,求组合图形的面积就是求几个简单图形的面积的和或差的计算,提高学生的识图能力,分析综合能力和空间想象能力。
2、通过实践操作、练习,提高观察、分析能力和解题的灵活性;能正确地分析图形。
3、培养学生的合作、探究意识及创新精神,及积极参与数学学习活动的习惯
二、教学重难点
理解什么是组合图形,能运用“分割法、添补法或割补法”将组合图形转化成已学过的图形,计算组合图形的面积。
三、教学过程
(一)观察动画,复习旧知,引出新知(出示课件2~3)
1、观察动画,分析引入(媒体出示由基本图形拼成的房子等)
师:观察这两幅图画,你发现了什么?
生:很多的简单图形,组成了很多的图形 [板书:简单图形]
师:这些由简单图形组合而成的图形,就叫做组合图形。[板书:组合图形] (示课件4)
2、复习基本图形面积公式(出示课件5)
师:还记得我们都学过哪些基本图形吗?
(随着学生回答,按学习的'顺序贴各个基本图形)
问:那谁还记得这些基本图形的面积公式?
(随着学生回答,在各个基本图形后面写公式)
师:真不错,看来同学们对面积公式知识的掌握相当扎实。那像这些组合图形,怎么求面积呢?有同学已经有想法了。今天这节课,我们一起来探索组合图形面积的计算方法?(板书:在组合图形后面增加“面积”)(出示课件6)
(三)拓展方法,发展思维
师:请你估计他家至少要买多大面积的地板。
(学生小组讨论、交流)
师:同学们打算用什么方法求它的面积?请把你的想法用虚线在答题纸的客厅平面图中表示出来.再和小组同学说说自己的想法
(学生动手画图,师巡视了解情况指导)
师:同学们做好了吗?刚才看到同学们讨论得非常热烈,能感觉到同学们都很喜欢动脑筋,现在请谁来介绍,小华家的客厅面积是怎样计算的?
(学生分别介绍不同的计算方法,见下图)(出示课件10~13)
(四)归纳提高 (出示课件14)
师:请同学们想一想,上述四种计算方法中,哪些是相同的,哪些是不同的?
生:前三个图形都是将组合图形进行分割,然后再进行计算。而第四个图形是补上去一块。
师:为什么要补上一块呢?
生:补一块就成基本图形了。
师:这种方法叫添补的方法,将原图形补充为基本图形,然后求出整个儿图形的面积,然后再减去补充的部分的面积。
强调:其实不管是用割还是用补甚至是割补,我们都是为了一个共同的目的,那就是把组合图形转化成已学过的平面图形。(出示课件15)
师:能找出最简单的方法吗?(是啊,分成的图形越少,计算面积时就越简便,所以我们以后在计算组合图形的面积时要学会选择简便的方法进行计算。)
学生独立计算。(现在你会计算这个组合图形的面积吗?请在答题纸上算出面积)
汇报交流,引到比较
现在我们已计算出了这个组合图形的面积,请把你计算的正确答案与刚才同学们估计的数据比较一下,有的估计偏大了有的偏小了。
(五)归纳算法
师:刚才我们帮小华计算出客厅的面积即组合图形的面积。现在一起回忆计算组合图形面积的计算过程。
我们先用割或补、割补的方法把组合图形转化成了以前学过的平面图形,然后找出计算每个小图形所需的条件,再算出组合图形的面积。
(六)教学“试一试”(出示课件16)
理解题意,明确“这张纸板还剩下多大面积?”指的是哪些部分的面积,然后让学生独立计算,在此基础上组织学生交流,还有哪些计算方法。
(七)巩固练习
1.下面各个图形可以分成哪些已学过的图形? (出示课件17~18)
让学生“观察图形—选择方法—汇报交流”
2.计算墙壁面积(出示课件19)
观察图形—选择方法—独立计算—汇报交流
师:老师知道你们一定还有很多不同的计算方法,但你们的答案和这两位同学一样吗?是啊,同一个组合图形可以用多种不同的方法来计算面积,但答案是唯一的。
3.求门油漆的面积
师:同学们以聪明才智帮小华解决了一个难题,可还得请你们再帮一个忙。(出示课件20)
师:这里有什么需要注意的地方吗? 谁来给同学提个醒。
学生独立算完后指名汇报
和他方法一样的请举手,为什么你们都选择添补的方法呢?
师:是啊,计算组合图形面积并不是所有的方法都适用的,我们要学会根据条件选择合理的方法(分割法、添补法或割补法)。
(出示课件21)
(八)总结
本堂课你有什么收获?
板书设计:
分割
组合图形的面积 基本图形 计算
填补
数学面积计算教学设计8
教学目标
1、使学生经历操作、观察、填表、讨论、归纳等数学活动,探索并掌握三角形的面积公式,能正确地计算三角形的面积,并应用公式解决简单的实际问题。
2、使学生进一步体会转化方法的价值,培养学生应用已有知识解决新问题的能力,发展学生的空间观念和初步的推理能力。
教学重难点
教学重点:理解并掌握三角形面积的计算公式
教学难点:理解三角形面积公式的推导过程
课前准备
多媒体课件
教学过程
师生活动
思考与调整
一、复习导入:
复习平行四边形面积公式的推导过程
二、探究新知:
1、教学例4:
师:仔细观察这3个平行四边形,请说出如何求每个涂色的三角形的面积?先自己想,随后在小组中交流。
学生讨论后汇报(平行四边形的面积÷2)
师:为什么可以用“平行四边形的面积÷2”求出每个涂色的`三角形的面积?三角形与平行四边形究竟有怎样的关系?三角形的面积有应当如何计算?今天继续运用“转化”的方法来研究三角形面积的计算。(板书课题:三角形面积的计算)
2、教学例5:
(1)出示例5:
师:用例5中提供的三角形拼成平行四边形。(注意:组内所选的三角形都要齐全)
(2)小组交流:
你认为拼成一个平行四边形所需要的两个三角形有什么特点?
要使学生明确:用两个完全一样的三角形可以拼成一个平行四边形。
(3)测量数据计算拼成的平行四边形的面积和一个三角形的面积并填表。
师:如何计算一个三角形的面积?从表中可以看出三角形与拼成的平行四边形还有怎样的关系?(小组交流)
得出以下结论:
这两个完全一样的三角形,无论是直角、锐角,还是钝角三角形,都可以拼成一个平行四边形。
师生活动
思考与调整
这个平行四边形的底等于三角形的底
这个平行四边形的高等于三角形的高
因为每个三角形的面积等于拼成的平行四边形面积的一半
所以三角形的面积=底×高÷2
板书如下:
平行四边形的面积=底×高
2倍一半
三角形的面积=底×高÷2
(4)用字母表示三角形面积公式:S=ah
三、巩固练习:
1、完成试一试:
2、完成练一练:
(1)先让学生回忆拼得过程,再回答。
(2)要让学生说清是如何想的。
3、完成练习三第1-3题:
四、课外延伸:介绍第16页“你知道吗”
五、全课总结:
师:通过今天的学习有哪些收获?
板书设计:三角形面积的计算
转化
已学过的图形新图形
拼摆
因为平行四边形的面积=底×高
2倍一半
所以三角形的面积=底×高÷2
教学得与失:
课题
三角形面积的计算
数学面积计算教学设计9
教学内容:教材第4~5页例2、例3和“练一练”及练习一。
教学要求:
1.使学生理解和掌握圆柱体表面积的计算方法,能根据实际情况正确地进行计算,培养学生解决简单的实际问题的能力。让学生认识取近似值的进一法。
2.进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。
教具学具准备:教师准备一个圆柱模型(表面要有可揭下各个部分的一层纸);学生准备一个圆柱体。
教学重点:掌握圆柱侧面积的计算方法。
教学难点:能根据实际情况正确地进行计算。
教学过程:
一、铺垫孕伏:
1.复习圆柱的`特征。提问:圆柱有什么特征?
2.计算下面圆柱的侧面积(口头列式):
(1)底面周长4.2厘米,高2厘米。
(2)底面直径3厘米,高4厘米。
(3)底面半径1厘米,高3.5厘米。
3.提问:圆柱的一个底面面积怎样计算?
4.引入新课。
我们已经会计算圆柱的侧面积,那么怎样计算圆柱的表面积呢?这节课就学习圆柱的表面积计算,(板书课题)
二、自主研究:
1.认识表面积计算方法。
(1)请同学们拿出圆柱来看一看,想一想圆柱的表面包括哪几个部分,然后告诉大家。指名学生拿出圆柱,边指边说明它的表面包括哪几个部分。
(2)教师演示。
出示教具,说明把表面全部展开,看一看得到什么图形,和大家说的对不对。揭下圆柱表面的纸,贴在黑板上,再与圆柱对比说明各个部分,明确圆柱表面包括一个侧面和两个相等的圆。
(3)得出公式。
请同学们看着表面展开的图形说一说,圆柱的表面积应该怎样计算?(板书:圆柱的表面积:侧面积+两个底面积)追问:圆柱的侧面积怎样算?圆柱的一个底面积怎样算?
2.教学例2。
出示例2,学生读题。提问:这道题分哪几步来算?你们会做吗?指名一人板演,其余学生做在练习本上。集体订正,让学生说说每一步的具体含义,是怎样算的。
3.组织练习。
做“练一练”。指名两人板演,其余学生做在练习本上。集体订正,说说这两题计算时有什么不同的地方,为什么?指出:计算圆柱的表面积,要注意题里的条件,正确列出算式计算。
4.教学例3。
出示例3,学生读题。提问:这道题实际是求什么?这里求表面积与例2有什么不同,为什么?(只要用侧面积加一个底面积)指名学生板演,其余学生做在练习本上。集体订正,追问为什么只加一个底面积。
5.组织练习。
(1)第七页第四题(2)。先小组合作讨论,再书面练习,然后集体订正。
三、课堂小结
这节课学习子什么内容?你学到了些什么?指出:求圆柱表面积在实际应用中,要注意题里的实际情况,弄清什么时候要侧面积加两个底面积,什么时候要侧面积加一个底面积,什么时候只要求侧面积,然后计算结果。另外,在求需要材料取近似数时,一般要用四舍五入法。
四、布置作业
练习一第8、10、11题及数训。
五、板书设计:
圆柱的表面积
圆柱的表面积=圆柱侧面积+两个底面的面积
例2(1)S侧:20×2×3.14×44=5526.4(平方厘米)
(2)S底:20×20×3.14=1256(平方厘米)
(3)S表:5526.4+1256×2=8038.4(平方厘米)
数学面积计算教学设计10
学习内容:
第9页的例4、例5、及“试一试”、“练一练”练习二中相关题。
学习目标:
1、经历操作、观察、填表、讨论、归纳等数学活动,探索并掌握三角形的面积公式,能正确地计算三角形的面积,并应用公式解决简单的实际问题。
2、进一步体会转化方法的价值,培养应用已有知识解决新问题的能力,发展空间观念和初步的推理能力。
学习重点:
理解并掌握三角形面积的计算公式
学习难点:
理解三角形面积公式的推导过程
学习过程:
一、先学探究
■先学提纲(另见《补充习题》、《当堂反馈》相关练习,有记号标明)
1、出示一个底是4分米,高是3分米的平行四边形。
这是一个什么图形?它的面积如何计算?
■学情预判:学生对三角形面积公式的推导过程可能有点困惑,这一点要加强教学。
二.交流共享
■后教预设:出示二个板块的挂图,通过讨论交流,解决问题。
【板块一】学习例4:
仔细观察这3个平行四边形,请说出如何求每个涂色的三角形的面积?
先自己想,随后在小组中交流。
你是怎样求出每个涂色的三角形的面积?
三角形与平行四边形究竟有怎样的关系?
三角形的面积应当如何计算?
【板块二】学习例5:
(1)出示例5:
用例5中提供的.三角形拼成平行四边形。(注意:组内所选的三角形都要齐全)
(2)小组交流:
你认为拼成一个平行四边形所需要的两个三角形有什么特点?
(3)测量数据计算拼成的平行四边形的面积和一个三角形的面积并填表。
小组交流:如何计算一个三角形的面积?
从表中可以看出三角形与拼成的平行四边形还有怎样的关系?
得出以下结论:
这两个 的三角形,无论是直角、锐角,还是钝角三角形,都可以拼成这个平行四边形的底等于 这个平行四边形的高等于因为每个三角形的面积等于拼成的平行四边形面积的所以三角形的面积=
(4)用字母表示三角形面积公式:
三、反馈完善
1、完成试一试:
2、完成练一练:
(1)先回忆拼得过程,再回答。(2)你是如何想的。
3.判断。
(1)两个形状一样的三角形,可以拼成一个平行四边形.……
(2)平行四边形面积一定比三角形面积大.……
(3)一个平行四边形与一个三角形等底等高,那么平行四边形的面积一定是三角形的2倍.………
(4)底和高都是0.2厘米的三角形,面积是0.2平方厘米…….
4.完成课本第17页第6题。
5、拓展练习
量出你的三角板(两个任选一个)的底和高,然后算出它的面积。
6、课外延伸:阅读第16页“你知道吗”
四、总结回顾:
通过今天的学习,你有什么收获?想要提醒大家注意什么?
数学面积计算教学设计11
教学目标:
1.推导和掌握长方形、正方形的面积公式。会应用公式正确计算长方形、正方形的面积。
2.通过观察、探究等活动,在经历推导长方形、正方形的面积计算公式的抽象过程中,感受长方形和正方形的面积计算的现实性。
3.在学习活动中获得成功的体验,培养应用意识,增强自信心。
教学重点:
推导并掌握长方形、正方形的面积公式。
教学难点:
会应用长方形、正方形的面积公式解决问题。
一、复习导入
出示长方形和正方形请同学摸一摸它们的面积。
今天我们一起探究如何计算长方形和正方形面积。
二、探究新知
1、探索长方形的面积公式
师:拿出课前研究单,先回顾昨天的研究,然后小组交流你的想法。
小组汇报
说一说你的发现。
(每人说一个,说完一个交流一个。)
汇报的时候讲清楚为什么一行摆6个小正方形能正好摆开,因为面积是1平方厘米的小正方形边长是1厘米,就是6个小格,宽是3厘米,所以放3行,一共放18个小正方形,就是18平方厘米。瓷砖的数量也就是长方形的面积。
那么长方形的面积公式是长×宽。到底对不对呢?我们来验证看看。
课件出示
长是6厘米,宽是3厘米的长方形,用小正方形铺,数格。
长是8厘米,宽是4厘米的长方形,用小正方形铺,数格。
长是5厘米,宽是4厘米的长方形,用小正方形铺,数格。
师:看来长方形面积的计算公式就是长×宽
练一个,长是7厘米,宽是3厘米,求这个长方形的面积,长方形的面积公式是长×宽,所以,我们要先知道这个长方形的长和宽是多少,长是7厘米,宽是3厘米,那么他的面积就是长×宽=21平方厘米。
2.正方形面积的计算公式
师:同学们太厉害了,那现在注意看,我们把长方形变一变,看看发生了什么变化,这是什么图形?它的边叫什么?它的面积怎么求?
师:当边长都相等时,也就是正方形的计算公式就是边长×边长。
边长是3厘米的正方形,计算,验证。
边长是5厘米的正方形,计算,验证。
边长是7厘米的正方形,计算,验证。
三、巩固练习
1、教材第68页练习题,计算三个图形的面积(说)
2、一个长方形球场,宽是40米,长是宽的`3倍,沿这个球场走一圈要走多少米?它的面积是多少平方米?
3、判断
(1)边长是1厘米的正方形,面积是4平方厘米。()
(2)长方形面积大于正方形的面积。()
(3)一个边长是4分米的正方形,周长和面积一样大。()
4、每人在卷子背面画一个长方形,画一个正方形(要取整厘米数的)请同桌互换,求它的周长和面积。
5、李爷爷家有一块正方形的菜地,一面靠墙。把这块正方形菜地围上篱笆,靠墙的一面不围,围后篱笆全长是63米。这块正方形菜地的周长是多少米?面积是多少平方米?
四、总结回顾,拓展延伸
在这一环节里,让学生说自己在这节课的收获,说说学习了这节课的知识在实际生活中有何帮助,让学生联系生活实际,能使学生深刻体会到所学知识的实用价值。
数学面积计算教学设计12
教学目标:
1、根据正方体特征,理解并掌握正方体表面积的计算方法。
2、能应用所学的知识灵活解决生活中的一些实际问题。
3、体会所学知识与现实的联系,培养学生的应用意识。
教学重点:正方体表面积的计算方法。
教学用具:学生准备:一个长方体和正方体实物。
教学过程:
一、预习提纲:
1、仔细读P35的例2
二、创设情境,自主探索。
以小组为单位自学、研究。
三、汇报交流,展示成果。
1、①要求包装这个礼品盒至少用多少平方分米的包装纸,实际是求什么?
②正方体的6个面有什么特征?
③怎样求正方体的表面积呢?
1.2×1.2×6
=1.44×6
=8.64(dm )
答:包装这个礼品盒至少要用8.64 dm 包装纸。
2.练习:完成P35“做一做”
分析题目的已知条件和问题,鱼缸有什么特征?学生解答
3×3×5
=9×5
=45(dm )
3.表面积计算中的实际问题:
(1)实际生产和生活中,有时要根据实际需要计算长方体或正方体中某几个面的面积之和。所以在求表面积时,要联系实际生活。如:油箱、罐头等都是6个面,游泳池、鱼缸等都是5个面,而水管、烟窗等都是4个面。
(2)判断:下面各种计算应该考虑几个面。
①制作一个无盖的铁皮水桶
②粉刷教室四面墙壁和顶棚
③给长方体罐头盒的`4壁贴上一圈商标纸
④给会客厅的大立柱刷油漆
⑤给水池抹水泥
四、课堂总结、评价:今天的学习,我学会了: 我在 方面的表现很好,在 方面表现不够,以后要注意的是: 。总体表现(优、良、差),愉悦指数(高兴、一般、痛苦)
四、课堂反馈:
1.一个正方体木箱,棱长5dm,在它的表面涂漆,涂漆的面积是多少?如果每平方分米用油漆8克,涂这个木箱要用油漆多少克?
2.用一根长72cm的铁丝做一个尽可能大的正方体框架,然后在它的表面糊纸,至少要用多少纸?
3.一个长方形的抽屉,它的长宽高分别是50cm、40cm、32cm,做3个这样的抽屉至少需要多大面积的木板?
板书设计:
正方体表面积的计算
例2 1.2×1.2×6
=1.44×6
=8.64(dm )
答:包装这个礼品盒至少要用8.64 dm 包装纸。
课后反思:正方体是特殊的长方体,所以其表面积公式的推导及灵活应用对学生而言都相对容易理解掌握。因此,在教学中,我灵活调整了练习重心,重点指导学生解决实际生活中有关长方体表面积的计算问题,培养思维的灵活性。在发展学生的空间观念上让学生上一个台阶,由知道长、宽、高就能想像出实物图形,并能根据生活实际确定所缺少的面应该如何求。
数学面积计算教学设计13
教学内容:九年义务教育人教版六年制小学课本第九册64页及例1
教学要求:
1、使学生理解平行四边形面积计算公式的来源,初步掌握并学会运用面积公式。
2、培养学生动手操作能力,发展空间思维能力;培养学生的大胆创新意识和小组间的团结协作精神。
教学重、难点:理解面积公式的推导过程。
教学准备:几个相同的平行四边形、投影、课件、剪刀
教学过程:
一、故事引入、设计情趣
拍卖公告
拍卖:为了大力发展小城镇建设,本镇现有一块地皮欲拍卖,有意者请与新袁镇政府办公室联系。
新袁镇人民政府
20xx年11月1日
问:1、如果你想参加竞拍,那你应该知道哪些条件呢?
2、如果这块地是个正方形,那求它的面积应该知道那些条件呢?长方形呢?
3、如果是平行四边形,那应该知道什么呢?(板书:平行四边形面积计算公式)
二、动手操作、激发兴趣
(1)、用数方格的方法计算平行四边形面积
1、 出示一个平行四边形,引导学生按照每个方格代表1平方厘米,让学生说出有多少?(让学生讨论如果不满一格应该怎么办)
2、 出示一个长方形,再引导学生计算一下,说出结果。
比较一下:长方形的长、宽、面积分别与平行四边形的底、高、面积有什么关系?
小结:从上面可以看出,平行四边形的面积也可以用数方格的方法求出来,但数起来比较麻烦,如果是拍卖的那块地你还能数嘛?那想一想,能不能像计算长方形面积那样,找出计算平行四边形面积的计算公式?
从上面的比较中我们发现了平行四边形的底、高、面积分别与长方形的长、宽、面积之间的关系,那你能不能把一个平行四边形转化成一个长方形呢?想一想,该怎么做?
(2)、用割补平移法推导平行四边形的面积公式
3、 让学生拿出准备好的平行四边形进行剪拼(教师巡视)然后指名到前边来演示。
4、 课件演示平行四边形转化成长方形的过程
刚才发现同学们把平行四边形转化成长方形时,就是把从平行四边形左三角形直接放在剩下的'梯形的右边,拼成长方形,这样好吗?在变边剪下的直角换图形的位置时,怎样按照一定的规律呢?
(1)、先沿着平行四边形的高剪下左边的直角三角形。
(2)、左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。
(3)、移动一段后,左手改按梯形的左部,右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。
(3)、引导学生比较
5、 这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积有什么变化?为什么?
6、 这个长方形的宽与原来的平行四边形的底有什么样的关系?
7、 这个长方形的宽与原来的平行四边形的高有什么样的关系?
归纳总结:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别与原来的平行四边形的底、高相等。
(4)、引导学生总结平行四边形面积计算公式
8、 这个长方形的面积怎么求?(板书:长方形的面积:长*宽)
9、 那么平行四边形的面积怎么求?
(5)、教学用字母表示平行四边形的面积公式
S=a × h (告知S和h的读音)
说明含有字母的式子里,字母和字母中间的乘号可以记作“。”,写成a·h,也可以省略不写,所以平行四边形面积的计算公式可以写成S=a·h 或S=ah
(6)、应用总结的面积公式计算平行四边形的面积
10、 回到课件首页,说一下那块地皮的底和高,引导学生想想根据什么列式?
11、 完成后让学生看书第65页例1
12、 测测自己准备的平行四边形量一量它的底和高各是多少厘米?再求出面积。
三、巩固、练习
略
四、作业
课后练习题
数学面积计算教学设计14
教学时间
1课时(40分钟)
学情分析
通过前几节课的学习,学生已经掌握了长方形的有关知识,会用数方格的方法计算长方形的面积,本节课也通过学生拼摆1平方厘米的小正方形来观察与长方形的长和宽的关系,进而概括出长方形的面积=长×宽。学生总结长方形面积公式也比较容易。因此,本节课应让学生亲自动手、动脑、小组合作共同推导出长方形和正方形的面积公式。
教学目标
一、情感态度与价值观
1.渗透“实验---发现----验证” 的学习方法,培养学生的自主学习能力、小组合作意识和探究精神。
2.通过学生亲手操作,激发学生的学习兴趣和热情。
二、过程与方法
引导学生小组合作通过用1平方厘米的小正方形摆一摆,掌握实验---发现----验证的学习方法。
三、知识与技能
1.经历长方形和正方形面积公式的推导,理解并掌握长方形和正方形的面积计算公式。
2.会正确运用长方形和正方形的.面积计算公式解决实际问题。
教学重点、难点
1.让学生经历长方形面积计算公式的推导过程,并会应用面积公式解决实际问题。
2.让学生自主探究,推导出长方形和正方形的面积计算方法,并理解长方形所含的平方厘米数正好等于长方形长所含的厘米数与宽所含的厘米数的乘积。
教学资源
(1)教学课件(2)每人15个边长1厘米的卡片、每2人一个长5厘米,宽3厘米的长方形卡片。(3)每4人一张表格。
数学面积计算教学设计15
一、学习目标:
1、学习圆柱的侧面积和表面积的含义,并掌握圆柱侧面积和表面积的计算方法。
2、会正确计算圆柱的表面积和侧面积,能解决一些有关实际生活的问题。
二、学习重点:
掌握圆柱侧面积和表面积的计算方法。
三、学习难点:
运用所学的知识解决简单的实际问题。
四、学习过程:
(一)、旧知复习
1、圆柱有几个面?分别是、和。
2、底面是形,它的面积=。
3、侧面是一个曲面,沿着它的高剪开,展开后得到一个形。它的长等于圆柱的,宽等于圆柱的。
4、一个圆形水池,直径是5米,沿着水池走一圈是多少米?
(二)列式为
1、圆柱的侧面积
(1)圆柱的侧面积指的是什么?
(2)圆柱的侧面积的计算方法:
圆柱的侧面展开后是一个长方形,这个长方形的面积就等于圆柱的侧面积。因为长方形的面积=,所以圆柱的侧面积=。
(3)侧面积的`练习
求下面各圆柱的侧面积。
①底面周长是1.6m,高0.7m。 ②底面半径是3.2dm,高5dm。
小结:要计算圆柱的侧面积,必须知道圆柱的和这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。
2、圆柱的表面积
(1)圆柱的表面是由和组成。
(2)圆柱的表面积的计算方法:
圆柱的表面积=
(3)圆柱的表面积练习题
一顶圆柱形厨师帽,高28cm,帽顶直径是20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)
分析,理解题意:求需要用多少面料,就是求帽子的。需要注意的是厨师帽没有下底面,说明它只有个底面。
列式计算:
①帽子的侧面积=
②帽顶的面积=
③这顶帽子需要用面料=
小结:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟囱用铁皮只求一个侧面积;水桶用铁皮是侧面积+一个底面积;油桶用铁皮是侧面积+2个底面积。求用料多少,一般采用进一法取值,以保证原材料够用。
3、巩固练习
一个圆柱底面半径是2dm,高是4.5dm,求它的表面积。
4、总结:通过这节课的学习,你掌握了什么知识?
圆柱的侧面积
圆柱的表面积
五、教学结束:
布置学生课下复习本节课内容。
【数学面积计算教学设计】相关文章:
《梯形的面积计算》华体会可以注销账号不 02-09
长方形正方形面积的计算教学设计04-23
《梯形的面积》教学设计06-15
《认识面积》教学设计07-25
《组合图形面积的计算》华体会可以注销账号不 02-23
组合图形面积的教学设计05-12
人教版梯形面积教学设计11-22
《长方形的面积计算》华体会可以注销账号不 09-02
《多边形面积计算》华体会可以注销账号不 11-03
圆柱的表面积教学设计06-30