- 《植树问题》优秀教学设计 推荐度:
- 相关推荐
《植树问题》教学设计
作为一名辛苦耕耘的教育工作者,编写教学设计是必不可少的,教学设计是一个系统化规划教学系统的过程。我们该怎么去写教学设计呢?以下是小编整理的《植树问题》教学设计,仅供参考,欢迎大家阅读。
《植树问题》教学设计1
教学目标:
1.使孩子透过生活中的事例,初步体会解决植树问题的方法。
2.初步培养孩子从实际问题中探索规律,找出解决问题的有效方法的潜力。
3.让孩子感受数学在日常生活中的广泛应用,培养孩子的应用意识和解决问题的潜力。
教学重点:
用解决植树问题的方法解决实际问题。
教学难点:
栽树的棵数与间隔数之间的关系。
教具准备:多媒体课件。
设计理念:新课标指出:“有效的数学学习活动不能单纯地依靠模仿与记忆,动手实践、自主探索与合作交流是孩子学习数学的重要方式。”同时指出:“孩子是数学学习的主人,老师是数学学习的组织者、引导者与合作者。”结合新课标的要求,教学中力求发挥孩子的主体地位,让他们动脑、动手、合作探究,经历分析、思考、解决问题的全过程,体会植树问题这一重要的数学思想方法。
教学过程:
一、谈话导入:
师:同学们,你们喜欢植树吗?你植过树吗?(生答)植树能绿化环境,造福人类。在生活中,常常遇到在路的一边、间隔必须的距离植树,这就需要计算准备多少棵树苗。还有许多类似的问题:比如在公路两旁安装路灯、花坛摆花、站队中的方阵等等,在数学上,我们把这类问题统称为“植树问题”。
二、揭示学习目标:(媒体出示)
透过这节课的学习,我们要解决哪些问题呢?
1.能根据相关条件,求出需要多少棵树苗或计算两树间的距离。
2.能利用植树问题,灵活解决生活中类似的实际问题。
三、探究新知:
1.出示例1:同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?(生读题)
师:你会计算吗?(让孩子回答)你算的.对吗?请同学们自己动脑来验证一下。
学习提示:(媒体出示)
①假如路长只有10米,要栽几棵树?如果路长是20米,又要栽几棵树?请你画线段图来看看。
②透过上面的分析,你能找出什么规律?和同桌或小组内说说。
③此刻你能算出一共需要多少棵树苗吗?
④你还有别的想法吗,在小组内说说。
2.孩子自学探讨。(师巡视)
3.班内交流。孩子回答后,师媒体演示间隔数和间隔点数的关系。
总结规律:栽的棵数比间隔数多1。
完成例题。
四、变化巩固:
1.做一做:118页孩子独立完成。订正时说说怎样想的,重点让孩子明确先求出间隔数,即36棵树有35个间隔。
2.122页第2题。独立完成,同桌交流想法,可一生板演。
五、检测反馈:(独立完成)
1.在一条长400米的马路的一边,从头到尾每隔8米种一棵树。一共能够种多少棵树?
2.5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?
3.从王村到李村一共设有16根高压电线杆,相邻两根的距离平均是200米。王村到李村大约有多远?
孩子完成后师批阅订正,发现问题及时解决。
六、总结延伸:
这节课我们学习了植树问题,并能利用植树问题解决生活中类似的实际问题,解答时要重点分清栽树的棵数与间隔数间的关系,后面还有一些不同的状况,期望大家开动脑筋,灵活处理。
《植树问题》教学设计2
一、教学目标:
1、通过探究发现一条线段上两端要种植树问题的规律。
2、使学生经历和体验“复杂问题简单化”的解题策略和方法。
3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。
二、教学重点
使学生掌握“两端都要种的植树问题”的解题方法。
三、教学难点
使学生掌握已知株距和全长求株数的方法,以及已知株数和株距求全长的方法。
四、教学准备
多媒体课件、小棒、直尺、卡片、探究表。
五、课前互动
1、同学们,我们先来说说顺口溜,好吗?一只青蛙一张嘴,两只眼睛四条腿;两只青蛙两张嘴,四只眼睛八条腿。会说吗?请继续……
2、接下来,我们来说一个不一样的,有信心吗?两个手指一个隔(教师示范用手指展示出来,让学生也跟着做),三个手指两个隔,会说吗?请继续……学生说到五个手指四个隔时,引出“间隔,间隔数”的概念。(在数学上,我们把空格叫做间隔,也就是说,5个手指之间有4个间隔?间隔数为4。)
3、随机请一行同学站起来,不断增减学生,让学生边观察边说,几个同学几个隔,老师发问,哪个间隔长,引出“间隔长”的概念。
教学过程
六、引入课题
生活中“间隔”随处可见,比如,每相邻两棵树之间的距离,也是一个间隔,这节课我们就一起来研究和解决一些简单的、与间隔有关的问题—植树问题。(板书课题:植树问题)
七、引导探究,发现“两端要种”的规律
1、情景导入例题
①课件出示校园图片。
植树不仅能净化空气,还能美化环境。这是我们学校的新校区,绿化校园是我们的一个重要任务。植树节那天,我们全体老师参与了植树活动,(出示综合楼前的小树图片)这是我设计的,你们想知道我是怎样设计的吗?(出示*场图片)这是我们学校的*场,*场外面是一条车道。现在要在车道一边种一行树,校长想在我们班选几名优秀环境设计师完成这项任务。你们想成为优秀环境设计师吗?
出示示意图及题目:同学们在全长100米的车道一边植树,每隔5米栽一棵树(两端要种)。一共需要多少棵树苗?
②理解题意。
a、指名读题,问:要求一共要栽多少棵树,首先应该考虑到哪些问题
b、理解“两端”“一边”是什么意思?
指名说一说,然后师实物演示:指一指哪里是这尺子的两端?一边又是什么意思?
说明:如果把这根尺子看作是这条车道,在车道的两端要种就是在车道的两头要种。一边栽就是在车道的一旁栽。
③算一算,一共需要多少棵树苗?
④反馈。
2、引发猜想
师:三种意见(19棵、20棵、21棵),哪种是正确的呢?
八、解决两端都种求总长度的实际问题
同学们发现规律的能力可真不错。下面我们玩个站队的'游戏。
1、这一列共有几个同学?(4个同学现场站队)如果每相邻两个同学的距离是1米,从第1个同学到最后一个同学的距离是多少米?
师:这个问题与刚才的类型有什么不同?学生试做,反馈。
你运用哪个规律?(间隔长×间隔数=总长度)
2、这一列共有10个同学呢?100个同学呢?
3、这个规律,你能算算我们学校综合楼的长度吗?
出示:学校综合楼前种树,每隔4米种一棵,一共种了15棵树。从第一棵到最后一棵一共多少米?学生口答。(示意选拔设计师)
小结:刚才,我们应用发现的规律,解决了一个实际问题。我们已经知道,“两端要种”求棵数用间隔数+1;还知道通过棵数与间距求总长度。
九、回归生活,实际应用
其实,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。
1、出示:在一条全长2千米的街道两旁安装路灯(两端也要安装),每个50米安一座,一共要安装多少座路灯?
问:这道题是不是应用植树问题的规律解决的?学生读题,练习反馈。(示意选拔设计师)
2请同学们认真听,伸出右手,用手指记下钟敲打的次数,你发现什么?(次数比间隔数多1)
出示:广场上的大钟5时敲响5下,8秒钟敲完。12时敲响12下,需要多长时间?
学生讨论,汇报。(示意选拔设计师)
十、全课总结
1、师:同学们今天的表现真不错,运用发现的规律解决了不少问题,你们看,老师把大家的发现编成了一首儿歌,我们一起来读读吧!
小树苗,栽一栽,两端都栽问题来,间隔数多1是棵数,棵数少1是间隔数,怎样求出间隔数?
全长除以间隔长度。
2、师:植树问题中的学问还有很多,在以后的学习中,我们还会学到两端不栽,一端栽,封闭图形中的植树问题,这些都需要同学们在以后的学习中开动脑筋、积极思考才能找到解决问题的好办法。
《植树问题》教学设计3
单元教学目标:
1、使学生通过生活中的事例,初步体会解决植树问题的思想方法。
2、初步培养学生从实际问题中探索规律、找出解决问题的有效方法的能力。
3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。
教学时数:4课时
数学广角植树问题(一)
第一课时教学内容:
教科书第117页118页的例1、例2
教学目标:
1、利用学生熟悉的生活情境,通过动手操作的实践活动,让学生感悟分的段数与植树棵树之间的关系。
2、通过小组合作、交流、使学生能理解段数与植树棵树之间的规律。
3、通过实践活动激发热爱数学的情感,感受日常生活中处处有数学,体验学习成功的喜悦。
教学重点、难点:
教具:
挂图、直尺
教学过程:
一、创设情境,引入课题
1、每位小朋友都有一双灵巧的小手,它不但会写字,画画、干活,在它里面还藏着有趣的数学知识,你想了解它吗?请举起你的右手,请每一位学生高举起右手,并将五指伸直,关拢。
师:现在请每位小朋友将五指张开,数一数,张开后有几个空格?(4个)
师:在数学上,我们把这个空格叫间隔。刚才,我们把五指张开,有4个空格,也就是4个间隔。
2、举例说出生活中的间隔到处可见,比如:在马路边种树,每两棵树之间有一段距离,我们就把这一段距离叫做一个间隔,楼梯、锯木头等。
3、大家清楚地看到,5个手指之间有4个间隔,那么,将手指换成小树,5棵小树之间有几个间隔(4个),6棵呢?7棵呢?
今天,我们就来学习有趣的植树问题。
(一)出示:在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?
1)同桌相互讨论。
2)有线段图表示你的`方法
3)学生汇报
4)引导总结:
两端要栽的时候,比较间隔数和棵数,你得出什么规律?(生:棵树比间隔数多1)
你能用一个式子表示两端都栽的棵数和间隔数的关系吗?
板书:棵数=间隔数+1
5)在线段图上,又有怎样的关系呢?
点数=间隔数+1
6)这个问题应是:1005=20(个)间隔数
20+1=21(棵)棵数
巩固练习
(一)书第118页的做一做独立完成,指名反馈。
(二)出示:大象馆和猩猩馆相距60米。绿化队要在两馆间的小路两旁栽树,相邻两棵树之间的距离是3米,一共要栽几棵树?
1)读题,理解题。
2)分组看图讨论。
3)尝试列式计算。
4)交流:603=200间隔数
两端不栽树:20-1=19(棵)
192=38(棵)
5)质疑:
为什么减1?为什么乘2?
比较例1与例2的不同?小组讨论,再交流
例1两端要栽树,所以棵数比间隔大1:例2两端不栽树,所以棵数比间隔少1。
巩固练习二:
教科书第119页做一做1、2题
学生独立完成,集体反馈。
三、本课小结:
通过今天的学习,你有什么收获?
《植树问题》教学设计4
教学内容:五年级(上册)第106页例1及练习二十四的1—5题
教学目标:
1.通过探究发现一条线段上两端要种植树问题的规律。
2.向学生渗透化归的思想方法。
3.让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。
教学重点:
使学生掌握“两端都要种的植树问题”的解题方法。
教学难点:
用发现的规律解决生活的'实际问题作为难点。
教学过程:
一、引入课题
3月12日是什么节日呢?植树有什么好处呢?从而引出课题——植树问题。(板书课题:植树问题)
二、引导探究,发现“两端都要栽”的规律
让学生在一条长度为12厘米的线段上等距离的植树,通过植树的情况引出间隔和间隔数以及棵数与间隔数之间的关系。
三、利用规律解决植树中的问题
例1、同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要栽多少棵树苗?每隔4米呢?每隔10米呢?把小路延长到1000米呢?
100÷5=20(段).........间隔数
20+1=21(棵)...........棵数
答:一共需要栽21棵树苗。
小结:刚才,我们应用发现的规律,解决了实际问题。已经知道,“两端要种”棵数=间隔数+1.其实,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决.
四、回归生活,实际应用
1、园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第一棵到最后一棵的距离有多远?
2、在沿河路的一边,设有16个节能路灯(两端都设),相邻两根的距离平均是60米,这条路有多远?
3、同学们做操比赛,第一行从左起第一人到最后一人的距离是14米,每两人之间相距2米,这一行有多少人?
五、全课总结
1、在生活中,你还见过那些植树问题呢?
2、同学们今天的表现真不错,运用发现的规律解决了不少问题,你们有什么收获呢?
六、布置作业:课本109页第5题。
七、板书设计:
植树问题
两端要载棵数=间隔数+1
100÷5=20(段).........间隔数
20+1=21(棵)............棵数
答:一共需要栽21棵树苗。
《植树问题》教学设计5
教学内容:
四年级下册数学教科书第117页的例1
教学目标:
知识与技能
1、理解和掌握在一条线段上植树问题的规律,本节课研究“两端都要种”的“植树问题”中间隔数与植树棵数之间的规律。
2、引导学生用画线段图的方法分析理解题意,在摆学具的过程中理解间隔数与所栽棵数之间的规律,建构数学模型,感受数学的简化思想和应用价值。
过程与方法
经历解决实际问题的过程,体验分析解决问题的方法。
情感态度与价值观
体会数学知识在日常生活中的广泛应用,培养学生的探究意识和能力,受到热爱劳动、保护环境的教育。
教学重点:
发现“两端都栽”的植树棵数与间隔数之间的关系,并用发现的规律解决实际问题。
教学难点:
能应用规律解决实际问题
教法与学法:
教法:创设情境、引导学生探究
学法:小组合作讨论
教学准备:
多媒体课件、30根小棒、6个圆片、6个三角形
教学过程:
一、创设情境
课件出示:几张沙尘暴发生时的图片
问生:看到这几张图片,要想改变这样的生活环境,你应该做的最有意义的活动是什么?(植树造林)
师:植树造林可以防止沙尘暴,防止水土流失,净化空气,对我们有很多的益处。今天我们就来学习“植树问题”。板书课题。
设计意图:通过生活中的几张照片,沟通数学与生活的联系,让学生体验到数学问题来源于生活,激发学生的学习兴趣,渗透环保教育,由此导入新课,明白本节课的学习内容。
课件出示:(下面哪种情况属于两端都栽的)
让学生直观地看到两端都栽的植树情况,然后进入本节课的主题:今天我们就来研究“两端都栽”的植树问题。
设计意图:通过图示法,让学生直观地理解“两端都栽”的意义,为更好地探究新知作铺垫。
二、自主学习,合作探究。
(1)课件出示例题
1、出示例题后,让学生猜一猜,可能栽了几棵?(4棵、5棵、6棵)
设计意图:了解学生的已有知识水平,以及学生对自己答案的解释,这个环节教师不论学生答案是否正确,不作任何解释。引出矛盾,激起学生下一步探究的欲望。
2、这时教师不急于下结论,让学生通过摆学具、画线段图等方法去验证哪个答案是正确的。学生发表各自的看法,说出为什么是5棵?渗透一一对应的思想。
设计意图:通过摆学具、画线段图,让学生动手操作,直观验证到底哪个答案是正确的,潜移默化地渗透一一对应的思想。让学生通过实验的方法,做到心服口服,不盲目地作出选择,培养学生严谨认真的科学态度。
3、想一想:植树时为了美观,整齐关键先确定什么?全长20米的小路一边植树,(两端要栽),还有哪些植树方案?(学生会出现间隔7米栽一棵,这时说明理由,如果这样栽的话,间隔长就不相等了)
设计意图:给学生展现自我的机会,出现反例时,更能激发学生的求知欲,利用错误资源,能更好地证明间隔长必须是相等的,引出“间隔长”的意义。
(2)课件出示表格
(3)解释表中的“间隔长”、“间隔数”分别表示什么?
(4)观察表中的数据与课件图示,让学生找一找全长、间隔长、间隔数、所栽棵数之间的关系,互相交流讨论。
设计意图:通过分组练习探究,最后把结果都绘制到一个表格中,通过3个例子,采用不完全归纳法,让学生观察、讨论、交流,得出数量之间的关系,这是本节课的重点之处。
(5)汇报交流成果,得出规律。
从左向右看:全长÷间隔长=间隔数间隔数+1=所栽棵数
从右向左看:所栽棵数-1=间隔数间隔数×间隔长=全长
设计意图:数形结合,完善数学模型,弄清表中四个数量之间的关系,为后面解题提供解题思路。关键是弄清楚植树的棵数比间隔数多1。
(6)初步应用规律解决问题。
三、应用规律解决实际问题。
1、自测题,看学生的掌握情况。
设计意图:理解植树问题中,求全长的方法。
设计意图:理解植树问题中,求所栽棵数的方法,加深理解“植树的棵数比间隔数多1”的道理。
2、让学生说一说生活中的植树问题。
设计意图:把植树问题进行扩展,在生活中找到植树问题的原型,这样把知识系统化,使学生能够举一反三,触类旁通,知道植树问题中的“树”可以代替生活中的其他事物,找到数学中的植树问题与生活中的植树问题的联系。
四、应用规律解决生活中植树问题问题的原型。
1、这一组有9个同学,相邻两个同学之间的距离大约是()分米,第一个同学到第9个同学的距离大约有多远?先让学生测量间隔长,然后再求问题。
2、钟表问题。
设计意图:灵活应用植树问题的数学模型解决生活中类似的植树问题,把植树问进行扩展应用,提高学生灵活解题的能力。
五、课堂总结。
设计意图:如此设计是基于学生的思维状态,让学生对当堂课的知识和收获做一个回顾,就是学生整理知识思路、内化知识的过程,能起到画龙点睛的作用,更能培养学生的归纳能力。
:
《植树问题》是人教版义务教育课程标准实验教科书四年级下册中数学广角的内容。数学广角作为人教版新增的内容之一侧重点是让学生在掌握知识的同时向学生渗透一些常用的数学思想和方法。如何把抽象的数学思想方法很好地渗透在环节在教学中使学生在“润物细无声”中深刻体验到数学思想方法的价值这是我在教学设计时着重思考和要解决的问题。一节课实施下来有成功之处也有不足之处。现做一个简单的小结与反思。
成功之处:
一、教学设计有深度、有厚度。
教学设计分两条线走:一条线以构建学生知识结构为线索,使学生对植树问题的认识经历了“生活问题——猜想验证——建立模型”不断数学化的.过程,较好地实现了由生活中的具体问题过渡到相应的“数学模式”,为上升到更抽象的数学高度奠定了基础。然后又让学生运用模型解决问题,把数学化的东西又回归于生活,也让学生再一次体会数学与生活的密切联系。另一条线以渗透数学思想方法为线索。
对于植树问题的探究,不仅让学生通过画线段图、摆学具的方式自主探究、寻找,而且结合线段图、摆学具,让学生理解了为什么两端都种时,棵数会比间隔数多1,多的1指的是哪一棵树。让学生不仅要知其然,还要知其所以然。
由反复的修改,让我深刻地体会到了对教材研究的重要性,明白了“教师对教材看得有多深,才能使你的课堂有多厚”的道理。也让我知道了自己今后应该努力的方向。
二、敢于放手让学生去探究,体现学生的主体地位。
整堂课,我都比较注重学生的主体地位。因为我知道,只有学生自己想学、愿学,才能主动地学,并把学到的东西内化为自己的知识。因此对于重点部分的引入,即探究两端都种时,棵数与间隔数之间究竟有什么关系,我先让学生通过自己的猜测得到答案。当几种答案产生冲突时,再引导学生探究,这样更容易激发学生的探究欲望,激活学生的主体意识。而后的探究部分我就放手让学生去做,教师给予适当的指导,让学生在自主探索中掌握用线段图探究植树问题规律的方法。由此把方法内化为自己的东西,为下节课自主寻找另外两种植树问题的规律时,学生就比较轻松愉快了。
三、注重教学思想的渗透和学习方法的传授。
在整个教学的过程中,我都很注重数学思想方法的渗透。比如:当学生用一个线段图证明规律时,适时点拨。用一个线段图就能证明它是普遍存在的规律吗?再画几个试试(以小组为单位,分组研究)。交流时,让不同的学生说出用不同间隔的线段图得到同一个规律,实际就是向学生渗透不完全归纳法。在展示交流部分,通过对比10个间隔与2个间隔的线段图的难易,对比画一棵树和用
一个点表示一棵树的难易,让学生体会简化的思想。通过找生活中的植树问题,并解决生活中的植树问题,让学生体会化归的思想。对于学习方法的传授,整节课都特别重视线段图的运用。
当然,这节课也有许多的不足之处,列举几条:
一、教学时间安排欠妥。有的教学内容没有来得及出示,有的内容讲解比较仓促。练习巩固时间不充分,没有检测时间,使教师没有及时掌握每个学生的学习情况,心中没底。
二、本节课,我本想借助一一对应的思想去突破本节课的难点(两端都栽的情况下,所栽的棵数比间隔数多1),可是没有深入去理解植树问题中所蕴含的一一对应思想。所以,感觉得出的规律有些牵强、抽象,没有达到水到渠成的效果,没有把一一对应的思想与植树规律结合在一起,没有很好地突破难点。
三、对学生评价这块显得能力不足。对于学生的评价如何做到即准确又有深度,还要具有启发性,这是我还得努力学习的方向。
四、数学课关键在于“说”,以说促思,以说引思,这样可以了解学生的思维过程是否正确,以便教师及时调控课堂,改变教学策略,但是,为了能够完成教学任务,明知道应该让学生多说,但是由于时间问题,就把学生说的权利剥夺了,而去进行下面的教学内容,这是我一贯的通病,我争取改正,把更多的时间和空间留给学生,让学生真正成为课堂的主人。
总之,一堂课下来,发现自己真的还有那么多的不足之处。反思自己,今后还应加强学习,学习理论知识、学习优秀课例,特别应该针对自己的不足之处,运用于实际教学之中,逐步完善、改正。希望能通过自己一点一滴的积累和改进提高自己的业务水平和调控、处理课堂生成的能力,使自己能不断进步、不断发展。
《植树问题》教学设计6
教学内容:
《植树问题》
教学来源:
人教版小学数学教材第九册第七单元《植树问题》
教学对象:
五年级学生
备课人:
张金玲
基于标准:
数学广角的教学目标可概括为以下几点:
1、 感悟重要的数学思想方法;
2、 运用数学的思维方式进行思考,增强分析和解决问题的能力;
3、 在参与观察、猜测、试验、推理等数学活动中发展合情推理,感悟演绎推理思想,学会独立思考。
教材分析:
《植树问题》是人教版义务教育课程标准实验教科书五数上册第七单元“数学广角”中的内容。“数学广角”是人教版中的一个亮点,它系统而有步骤地向学生渗透数学思想方法,尝试把重要的数学思想方法通过学生可以理解的简单形式,采用生动有趣的事例呈现出来。这一单元内容就是植树问题,教材将植树问题分为几个层次,有两端栽、两端不栽、一端栽一端不栽以及环形情况、方阵问题等。本节课例1是两端都栽树的情况。
学情分析:
学生已经学习了除法的含义、《表内除法》、《除数是一位数的除法》、《除数是两位数的除法》以及用线段图来解决问题的方法。从学生的思维特点看,四年级学生仍以形象思维为主,但抽象思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。这部分内容放在这个学段,说明这个内容本身具有很高的数学思维和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。
学习目标:
1.利用学生熟悉的生活素材、通过画线段图、填表格、讨论交流等活动,能化繁为简并说出两端都栽的情况下间隔数与棵数之间的关系。
2.能发现并理解植树问题(两端要栽)的一般解题规律,并能利用规律解决相关的实际问题。
评价任务:
任务一:通过猜谜活动,以及画线段图、做表格等活动,完成目标一。
任务二:通过课堂例题的理解分析,找到两端都栽的植树问题的一般解题规律,达成目标二前半部分。另外利用习题的解决,达成目标二的后半部分。
【学习重点】:发现棵数与间隔数的关系。
【学习难点】:理解两端都栽的植树问题的一般解题规律并能运用规律解决问题。
【教学准备】:课件、小组学习单
【教学过程】:
一、导入新课
1、猜谜语,直观认识间隔
新课前老师给大家带来一个谜语,请看,“两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。打一人体的组成部分。”它是什么呢?谁知道?(手)
同意的'举手?你们真会联想,它就是我们的手。我们的手作用可真大,能写会算还会画,而且我们的手上还有许多的数学奥秘,仔细看自己的手,你能看到数字吗?(5)
哦,怎么看出5了?(表示手指的个数)谁还看到了数字5?真不错,除了用数字可以表示手指的个数,咱们的手上还有没有数字?(还能看到手指之间的间隔,两个手指之间的缝隙,教师说明,缝隙就称为间隔。)。
手指之间还有一个个的间隔。同学们,咱们手上五个手指之间到底有几个间隔呢?(4个)
我们一起来数一数。还真有4个间隔。那四个手指之间有几个间隔?三个手指之间呢?两个手指之间呢?(生依次回答。)
你发现什么了吗?(生说)
的确,手指数和间隔数之间是有着一定的规律的,它们之间的这种规律最适合解决今天我们要研究的这类问题,这类问题的名字叫做植树问题。板书:植树问题。
二、探究规律 实现目标
1、例题探究
说起植树问题我们就先从植树谈起吧。请看例题。
出示例题1:在全长1000米的小路一边植树,每隔5米栽一棵(两端都栽)。一共要栽多少棵树?
A、从题中你能知道哪些信息?谁来说一说?生说,师画。
它们都表示什么,大家知道吗?生说:一边表示只在小路的一侧种树。全长1000米表示第一棵树和最后一棵树之间的距离是1000米。每隔5米栽一棵表示棵与棵之间的距离是5米……
师小结:
一边是小路的一侧,指左边或者右边,全长1000米是指小路的总长。每隔五米栽一棵是每两棵树之间的距离,简称间距。两端要栽指起点与终点处都要栽。
B、算一算,一共要栽多少棵树?反馈答案:
方法1:1000÷5=200(棵)
方法2:1000÷5=200 200+2=22(棵)
方法3:1000÷5=200 200+1=21(棵)
疑问:现在出现了三种答案,到底哪种答案是正确的呢?下面我们一起来验证一下,你想用什么方法验证?(生说:画线段图的方法)
三、自主探究,发现规律
1、化繁为简探规律
是个好办法!我们可以选择画线段图来验证。每隔5米栽一棵就画一段,再过5米再画一段,这样我们需要画多少段呢?好画吗?为什么呀?(数据太大了)。那怎么办呢?(选择简单的数据进行研究,得出规律再解决这道题)
是呀,在遇到比较复杂的问题时,我们可以先用比较简单的例子来研究。你准备选用哪个数来研究?(生说)下面请大家自己选择简单的数据在练习本上试着进行验证,并把你试的结果汇报给组长填在表格中,之后观察表格中的数据,你发现了什么?把你的发现在小组内说一说。
《植树问题》教学设计7
教学目标:
1、通过猜测、试验、、验证等数学探究活动,使学生初步体会两端都栽的植树问题的规律,构建数学模型,解决实际生活中的有关问题。
2、培养学生通过“化繁为简”从简单问题中探索规律,找出解决问题的有效方法的能力,初步培养学生的模型思想和化归思想。
教学重点:
发现并理解两端都栽的植树问题中间隔数与棵数的规律。
教学难点:
运用“植树问题”的解题思想解决生活中的实际问题。
教学准备:
课件、直尺、学习纸。
教学过程:
(一)创设情境,引入新课
教师:你们知道3月12日是什么节日吗?关于植树你知道些什么?(引导学生说诸如植树时两棵数之间有一定的距离,这些距离一般相等……这些与本课学习相关的信息。)
教师:其实在植树中还隐藏着很多数学问题呢!今天我们这节课就来研究植树中的数学问题。(板书课题:植树问题)
(二)充分经历,探究新知
1、大胆猜测,引发冲突。
(1)读一读,说一说。
课件出示例1,引导学生获取相关数学信息。让学生读题,然后指名说一说:从题中你了解到了哪些信息?重点帮助学生弄清楚下列数学信息的含义:
“每隔5米栽一棵”是什么意思?
使学生明确“每隔5米栽一棵”就是指每两棵树之间的距离都是5米,每两棵树之间的距离也叫间隔长度,也可以说成“两棵树之间的间隔是5米”。
“两端要栽”是什么意思?“一边”是什么意思?
可以先让学生说一说,然后教师拿出实物演示。例如:让学生指出尺子的两端指的是哪里?一边指的是什么?
(2)猜一猜,想一想。
让学生根据例题中的信息,猜一猜一共要栽多少棵树苗,教师对学生的猜测不发表评论,引导学生积极发表自己的看法。
教师:到底要栽多少棵呢?对不对呢?你打算怎样检验自己的猜想?
引导学生用画线段图的方法进行验证。
(设计意图:帮助学生厘清题意,让学生通过猜想答案,引起认知冲突,激发学生继续探究的欲望。)
2、借助操作,探究规律。
(1)初步体验,化繁为简。
教师:我们用一条线段表示100米的小路,每隔5米栽一棵,大家可以用自己喜欢的图案表示树,每隔5米种一棵,每隔5米种一棵,照这样一棵一棵种下去……是不是很麻烦?
教师:为什么觉得很麻烦?
学生:因为100米里面有20个5米,太多了。
教师:也就是说100米在这道题中显得数据有点大,因此画图时会比较麻烦。像这样比较复杂的问题,我们可以先从简单一些的情况入手进行研究。比如,我们可以先选取100米中的一小段研究。
(2)教师演示,直观感知。
教师演示课件,边演示边说明。
教师:我们选取100米中的20米来研究,用一条线段表示20米,每隔5米栽一棵,也就是说树的间隔是5米。(教师板书)
教师;大家看一看,我们把这段路平均分成了几段?也就是有几个间隔?栽了几棵树?
引导学生说出20米长的一条路,间隔长度是5米,有4个这样的间隔,可以栽5棵树。
(设计意图:让学生体会复杂问题可以从简单问题入手的解题策略,并通过课件的演示,向学生示范线段图的画法,为学生下面的自主探究作好准备。)
(3)动手操作,初步体验。
让学生自由选择100米中的一小段,动手画一画,看一看这一小段上,两端都要栽,一共要栽几棵树。
教师选择有代表性的作品进行展示,为什么这样画?重点让学生说一说自己的想法:你是怎样画的?为什么这样画?一共要栽多少棵树?
教师:虽然这些同学选取的长度不一样,一共要栽的棵数也不一样,但他们所画的线段图特别是他们的分析和思考方法有相同的地方,你能找到吗?
引导学生观察,在这些不同的画法中,有一个共同的地方:棵树比间隔数多1。
(4)合理推测,感知规律。
教师:不用画线段图,如果这条路长30米、35米……又应栽几棵树呢?请同学们拿出学习纸,填写表格。
学生填写表格,教师巡视,对个别学生进行指导和说明。
学生填写完表格后,小组交流汇报结果。
(5)归纳概括,理解规律。
教师:请大家认真观察表格,你发现在一条线段上栽树(两端要栽),间隔数和棵树有什么关系?将自己的发现在小组内说一说。
学生汇报自己的发现。
引导学生发现两端都栽树,植树的棵数比间隔数多1,也可以说间隔数比棵数少1。
教师:为什么两端都栽树,棵数比间隔数多1?
学生回答后,教师借助课件演示帮助学生进一步直观理解。
(设计意图:学生动手操作,合作交流。让学生在不断的操作和交流中,经历了观察、发现和感受的全过程,学到了解决问题的方法。)
(6)即时巩固,强化规律。
教师:同学们都明白了两端都栽的情况下树的棵数与间隔数之间的关系,老师出几道题考考大家:7个间隔种几棵树?20个间隔种几棵树?9棵树之间有几个间隔?20棵树之间有几个间隔?
(设计意图:通过这个小练习,使学生进一步掌握在两端都栽的情况下,树的棵数和间隔数之间的关系。)
3、运用规律,验证例1。
教师:回到例1,在100米的小路一边植树,每隔5米栽一棵(两端要栽),到底一共要栽多少棵树?哪些同学刚才猜对了?
教师(点几个猜错的同学):现在你知道自己猜错的原因是什么了吗?给大家说说看,你要提醒大家注意什么?
学生尝试列式解决问题,教师巡视,有针对性地指导。
全班汇报交流,主要让学生弄清楚:100÷5=20是什么意思?为什么还要用20+1=21(棵)?
(设计意图:让学生经历猜测——试验——验证的探究过程,同时让学生明确每步算式的意义,以便于学生更好地理解植树问题的数学模型。)
(三)回归生活,实际应用
1、“做一做”第1题。
教师:这道题里没有植树呀,能用我们今天学的方法解决吗?
使学生明确应用植树问题的规律,可以解决生活中很多类似问题。在本题中把一盏路灯看成一棵树,也能用植树问题的规律来解决。
教师:其实植树问题,并不只是与植树相关,生活中有很多问题和植树问题相似,比如安装路灯、电线杆、设立车站等。
2、练习二十四1、2、3题。
让学生进一步感受到植树问题在生活中的广泛应用。
3、练习二十四第4题。
教师:这一题与例题有什么不同?
老师引导学生找出此题与例题的区别。例题是知道全长与间隔长度求棵数,而本题是知道间隔长度与棵数求路的全长。
教师:你是怎样计算的?为什么用36减1?
(设计意图:运用植树问题的数学模型解决生活中的.类似问题,把植树问题进行拓展应用,使学生能举一反三,触类旁通,并让学生体会到数学与实际生活的紧密联系。)
(四)课堂小结,畅谈收获。
反思:
通过本节课的学习,让学生了解两端都栽的情况下,棵数和间隔数的关系,这部分内容比较抽象,为了将难点化简,讲授新知前,我利用手指游戏导入,孩子很感兴趣,而且初步感受到了棵数、间隔数的关系。再从生活中抽取简单的植树现象,加以提炼,建立数学模型,再将这一数学模型应用于生活实际。
一、创设愉悦氛围,让游戏走入情境。
从学生感兴趣的猜谜和游戏入手,创设轻松愉悦的氛围,让学生初步感知棵数、间隔数的关系,为进一步的探究奠定了基础。这种学生感兴趣的学习情境有利于学生积极主动地投入到数学活动中。
二、注重自主探索,让体验走入方法。
体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,为学生提供了充分思考的时间与空间,让学生从简单的问题入手,借助直观的图示,探索植树问题两端要栽的规律。借助图形,建立知识表象,注重对数形结合意识的渗透,使学生得到启迪,悟到方法,从而建立起学习的信心,进一步解决较复杂的问题,渗透一种化归思想。
三、倡导知识运用,让建模走入生活。
“数学来源于生活,而又应该为生活服务。”让学生认识到只要善于观察,就会发现生活中的许多事例跟植树问题相似,引导学生要灵活运用所学知识来解决生活中的一些实际问题。
但这节课也有我颇感不足的地方,我觉得自己对学生的学习起点没有充分把握,没有注重学生逆向思维的培养,也没能很好地关注到全体学生,在以后的教学中,我还要注意把握好教材的度,适当进行取舍,更合理的安排好教学时间。
《植树问题》教学设计8
教学目标:
一、知识与技能性:
1.利用学生熟悉的生活情境,通过动手操作的实践活动,让学生发现间隔数与植树棵数之间的关系。
2.通过小组合作、交流,使学生能理解间隔数与植树棵数之间的规律。
3.能够借助图形,利用规律来解决简单植树的问题。
二、过程与方法:
1.进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。
2.渗透数形结合的思想,培养学生借助图形解决问题的意识。
3.培养学生的合作意识,养成良好的交流习惯。
三、情感态度与价值观
通过实践活动激发热爱数学的情感,感受日常生活中处处有数学、体验学习成功的喜悦。
教学重、难点
引导学生在观察、操作和交流中探索并发现间隔数与棵数的规律,并能运用规律解决实际问题。
教学准备:
课件
教学过程:
一、 动手种树,初步感知
1、创设情景
2、理解题意
[出示要求]:在操场边上,有一条20米长的小路,学校计划在小路的一边种树,请按照每隔5米种一棵的要求,设计一份植树方案,并说明你的设计理由。
师:从这份要求上,你能获得哪些信息?
(20米长的小路,一边,每隔5米种一棵)
3、设计方案,动手种树
师:了解了信息,请同学们设计一份植树方案。你可以用这条线段来代表20米长的小路,其中每一小段的长度是1厘米,我们用它来表示1米长的小路,请你用自己喜欢的图案或图形来表示小树苗,把你设计的方案画一画。比一比,谁画得快种得好,老师就聘请他作学校的环境设计师。
学生活动,教师巡视指导
4、反馈交流
师:根据你的方案,需要种几棵树?
师:同学们真会动脑筋,设计出了这么多的方案。那他们的方案分别是怎样的呢?
请设计师们给大家作一下介绍
师:他的设计符合要求吗?
师:这位同学是按照每隔5米种一棵的要求来设计的,我们把这个距离叫做间隔距离,在这份设计方案中,有几个间隔距离呢?我们一起来数一数。有4个这样的间隔距离。像这样间隔距离的个数我们又把它叫做间隔数。
师:接下来我们来看看种4棵树的设计方案是怎样的?
生答
师:最后我们来看看种3棵树的设计方案又是怎样的呢?
生答
师:就一个要求,同学们就设计出了三种不同的植树方案,真是太能干了!
看来你们都有成为环境设计师的资格。李老师会把你们的方案上交到学校的。
师:(出示三种方案线段图)不过,李老师有个问题想请教大家,既然这三种植树的方案都符合设计的要求,为什么同样是20m长的小路,同样的要求,为什么有的是种3棵树,有的是种4棵树,还有的是种5棵树? 谁能来说说他们不同的地方在哪里?
师:第一种方案,在路的头尾都种了一棵树,我们就把它叫做是“两端都种”的植树方案,第二种方案,只种头不种尾或者只种尾不种头,我们就把它叫做是“只种一端”的植树方案,第三种植树方案头尾都不种树,我们就把它叫做是“两端不种”的植树方案。(板书:两端都栽 只栽一端 两端不栽)
二、 合作探究,总结方法
1、总结规律
师:现在我们一起来研究一下,在这三种植树方案中,它们的'间隔数和树的棵数之间分别有着什么样的关系呢?同桌同学先讨论讨论,然后完成这张表格。
植树方案 间隔数(个) 棵数(棵) 间隔数与棵数的关系
学生反馈交流,师生共同完成表格
师小结:刚才我们通过每隔5米种一棵树的要求,发现了植树的三种方案,并知道了每种方案中棵数与间隔数之间的关系,接下来我们重点来研究“两端都种”的植树问题。
师:在两端都种的情况下,在这条20米长的小路上,如果按照每隔1米,2米,4米,10米的要求来种树,那么间隔数与棵数之间是不是也会存在这样的关系呢?
请同学们选择一种自己喜欢的间隔距离,先在线段图中画一画,然后再列式算一算,间隔数是几个,需要种几棵树?间隔数与棵数之间又有怎样的关系?
(学生活动后反馈交流)
师小结
2、运用规律
师:老师有问题要考你们了,知道的同学马上起立回答我,比比谁的反应快?在两端都栽的情况下,有8个间隔共要种几棵树?有10个间隔共要种几棵树?如果已种了6棵树有几个间隔?如果已种了10棵树有几个间隔?
三、 开放练习,应用方法
1、这是我们镇新修的一条公路(图示),公路全长100米,园林工人们想在公路的一侧种樟树(两端都要种),每两棵树之间的距离是10米,一共需要多少棵樟树苗?
(1)学生独立解答
(2)全班交流结果
2、师:如果两侧都要种,一共需要多少棵樟树苗?(把第1题中的“一侧”改为“两侧”?)
(1)学生独立解答
(2)集体反馈
3、 园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?
(1)学生独立解答
(2)集体反馈
师小结
4、在一条街道的一边等距离安装路灯(两端也要安装),街道全长800米,共安装了41座路灯,问相邻两座路灯之间的间隔距离是多少米?
(1)学生独立解答
(2)集体反馈
师:看来,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。
6、书本P122练习二十第4题
圆形滑冰场的一周全长是150米。如果沿着这一圈每隔15米安装一盏灯,一共需要装几盏灯?
四、课堂小结,课外延伸
师:通过这节课的学习你有什么收获?
五、板书设计:
植树问题
(主板书) (副板书)
间隔距离 间隔数 棵数
两端要栽:间隔数+1=棵数 1米 20个 21棵
只栽一端:间隔数=棵数 2米 10个 11棵
两端不栽:间隔数-1=棵数 4米 5个 6棵
10米 2个 3棵
《植树问题》教学设计9
教学目标:
1.通过探究发现一条线段上两端要种和两端不种两种不同情况植树问题的规律。
2.使学生经历和体验“复杂问题简单化”的解题策略和方法。
3.让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。
一、谈话引入,明确课题
母亲节刚过,我们马上又要迎来一个快乐的节日──“六·一儿童节”,这也是全世界少年儿童共同的节日。其实,一年中有意义的日子还有很多,你还知道哪些?能说几个吗?(生说)
大家知道3月12日是什么日子吗?(植树节)你参加过植树活动吗?植树不仅能美化环境,净化空气,而且植树中还有很多数学问题。今天这节课,我们就一起来研究“植树问题”。(板书课题:植树问题)
二、引导探究,发现“两端要种”的规律
1.创设情境,提出问题。
①课件出示图片。
介绍:这是我县新修的一条公路。公路中间有一条绿化带,现在要在绿化带中种一行树,怎么种呢?
出示题目:这条公路全长1000米,每隔5米种一棵树(两端要种)。一共需要多少棵树苗?
②理解题意。
a.指名读题,从题中你了解到了哪些信息?
b.理解“两端”是什么意思?
指名说一说,然后师实物演示:指一指哪里是这根小棒的两端?
说明:如果把这根小棒看作是这条绿化带,在绿化带的两端要种就是在绿化带的两头要种。
③算一算,一共需要多少棵树苗?
④反馈答案。
方法一:1000÷5=200(棵)
方法二:1000÷5=200(棵)200 +2=202(棵)
方法三:1000÷5=200(棵)200 +1=201(棵)
师:现在出现了三种答案,而且每种答案都有不少的支持者,到底哪种答案是正确的呢?咱们可不可以画图模拟实际种一种?如果从图上一棵一棵种到1000米,数一数,是不是就能知道到底谁的答案是正确的了呢?
2.简单验证,发现规律。
①画图实际种一种。
课件演示:我们用这条线段表示这条绿化带。“两端要种”,我们从绿化带的这头开始,先在头儿上种上一棵,然后隔5米再种一棵,再隔5米再种一棵,再隔5米再种一棵,照这样一棵一棵的种下去……
师:大家看,已经种了多少米?(45米)这么长时间才种了45米,一共要种多少米?(1000米)要一棵一棵一棵一直种到1000米呀?!同学们,你有什么想法?(太累了,太麻烦了,太浪费时间了)
师:老师也有同感,一棵一棵种到1000米确实太麻烦了。其实,像这种比较复杂的问题,在数学上还有一种更好的研究方法,大家想知道吗?这种方法可不是一般的方法。大家听好喽,这种方法就是:遇到比较复杂的问题先想简单的,从简单的问题入手来研究。比如:1000米的路太长了,我们可以先在短距离的路上种一种,看一看。大家想不想用这种方法试一试?
②画一画,简单验证,发现规律。
a.先种15米,还是每隔5米种一棵,画图种一种,看种了多少棵?比一比,看谁画得快种的好。(板书:3段4棵)
b.跟上面一样,再种25米看一看,这次你又分了几段,种了几棵?(板书:5段6棵)
c.任意选择一段距离再种一种,看这次你又分了几段,种了几棵?从中你发现了什么?
(板书:2段3棵;7段8棵;10段11棵。)
d.你发现了什么?
小结:你们真了不起,发现了植树问题中非常重要的一个规律,那就是:
(板书:两端要种:棵树=段数+1)
③应用规律,解决问题。
a.课件出示:前面例题
问:应用这个规律,前面这个问题,能不能解决了?那个答案是正确的?
1000÷5=200这里的200指什么?
200 +1=201为什么还要+1?
师:这个“秘方”好不好?
通过简单的例子,发现了规律,应用这个规律解决了这个复杂的问题。以后,再遇到“两端要种”求棵树,知道该怎么做了吗?
b.解决实际问题
运动会上,在笔直的跑道的一侧插彩旗,每隔10米插一面(两端要插)。这条跑道长100米,一共要插多少面彩旗?(学生独立完成。)
问:这道题是不是应用植树问题的规律解决的?
师:看来,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。
小结:刚才,我们应用发现的规律,解决了一个实际问题。我们已经知道,“两端要种”求棵树用段数+1;如果“两端不种”棵树和段数又会有怎样的关系呢?
三、合作探究,“两端不种”的规律
1.猜测“两端不种”的规律。
猜测结果是:两端不种:棵树=段数-1
师:到底同学们的猜测是不是正确呢?我们还是用前面学习的方法,举简单的例子画一画,种一种。
要求:每人先独立画一段路种种看;然后4人一组进行交流。你们组发现了什么规律?
2.独立探究,合作交流。
3.展示小组研究成果,发现规律,验证前面的猜测。
小结:同学们太了不起了,通过举简单的例子,自己又发现了“两端不种”的规律:棵树=段数-1。如果“两端不种”求棵树,你会做了吗?
4.做一做。
①在一条长20xx米的路的一侧种树,每隔10米种一棵(两端不种)。一共需要多少棵树苗?(学生独立完成)
②师:同学们注意看,这道题发生了什么变化?
课件闪烁:将“一侧”改为“两侧”
问:“两侧种树”是什么意思?实际要种几行树?会做吗?赶紧做一做。
小结:今天我们研究了植树问题的两种情况。发现了两端要种:棵树=段数+1;两端不种:棵树=段数—1。以后同学们在做题的时候,一定要注意分清是“两端要种”还是“两端不种”。
四、回归生活,实际应用
1.一根木头长8米,每2米锯一段。一共要锯几次?(学生独立完成。)
8÷2=4(段)
4—1=3(次)
问:为什么要—1?这相当于今天学习的植树问题中的那种情况?
2.我们身边类似的数学问题。
①看,这一列共有几个同学?(4个)如果每相邻两个同学的距离是1米,从第1个同学到最后一个同学的距离是多少米?如果这一列共有10个同学呢?100个同学呢?
②这一列还是4个同学,如果每相邻两个同学之间的距离是2米,从第一个同学到最后一个同学的距离是多少米呢?
3.在一条路的一侧种树,每隔6米种一棵,一共种了41棵树。从第1棵树到最后一棵树的距离是多少米?
五、全课总结
通过今天的学习,你有哪些收获?
师:通过今天的学习,我们不仅发现了植树问题中两端要种和两端不种的规律,而且还学习了一种研究问题的方法,那就是遇到复杂问题先想简单的。植树中的学问还有很多,有兴趣的同学,课下可以查阅有关的资料继续研究。
“植树问题”说课
“植树问题”是人教版新课程标准实验教材四年级下册“数学广角”的内容。大家都知道,数学的思想方法是数学的灵魂。本册安排“植树问题”的目的就是向学生渗透复杂问题从简单入手的思想。为此,本课制定了三个教学目标:
1.通过探究发现一条线段上两端要种和两端不种两种不同情况植树问题的规律。
2.学生经历和体验“复杂问题简单化”的解题策略和方法。
3.让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。
本课教学分四大环节:
一、谈话导入,明确课题
二、引导探究,发现“两端要种”的规律
1.创设情境,提出问题。
通过创设在公路中间绿化带中植树的现实问题情境,提出“共需多少棵树苗的'问题”。学生在解答的过程中出现了三种不同的答案,到底哪种答案对呢?引导学生通过画图实际种一种去检验。通过模拟种学生体验到一棵一棵种到1000米太麻烦了,于是老师介绍研究复杂问题的方法:遇到复杂问题想简单的,从简单问题入手去研究。(说明:为了使学生对复杂问题简单化的思想体验得更深刻,教材原题是在100米的小路的一侧植树我们将100米改为了1000米。)
2.简单验证,发现规律。
在举简单例子画一画这个环节,安排了两个小层次:
①按老师要求画。
②学生任意画。
通过按老师要求画,学生对棵树和段数的关系已有了一定的感性认识。然后让学生再任意画一画,种一种,更丰富了学生的感性材料,为学生顺利发现并总结规律打下了基础。
3.应用规律,解决问题。
①应用规律,验证前面例题哪个答案是正确的。
②应用规律,解决插多少面小旗的问题。
这样一方面巩固刚发现的规律,另一方面使学生认识到植树问题的规律不仅仅能解决植树的问题,还能解决生活中很多类似的问题。
三、合作探究“两端不种”的规律
1.猜测“两端不种”的规律。
猜测是一种培养学生推理能力的好方法。学生已经发现了“两端要种”的规律,这时候老师提出如果两端不种,棵数和段数又会有怎样的规律呢?有了前面的学习基础,学生的思维非常活跃,想表达的欲望也很强烈。所以这时候让学生进行猜测是很有必要的,通过验证证明绝大多数同学的猜测是正确的,这样学生的研究成果被认可使学生会有一种成就感,从而也更增强了学生学习数学的信心。
2.独立操作,探究规律。
有了前面的学习基础,放手让学生先独立探究再合作交流,通过简单的例子验证前面的猜测,发现两端不种的规律。在这个过程中,学生对复杂问题从简单入手的数学思想又有了更深刻的体验。
四、回归生活,实际应用
设计了三道题:锯木头、算第一个同学和最后一个同学的距离以及对算距离问题的进一步巩固。通过解决生活中的问题,使学生感受到数学知识源于生活,用于生活,数学就在我们身边。从而使学生深刻感受到数学的应用价值,激发了学生学习数学的兴趣。
《植树问题》教学设计10
教学目标:
1.建立并理解在线段上植树(两端都栽)的情况中“棵数=间隔数+1”的数学模型。
2.利用线段图理解“点数=间隔数+1”“总长=间隔数×间距”等间隔数与点数、总长、间距之间的关系,解决生活中的实际问题。
教学重点:建立并理解“点数=间隔数+1”的数学模型。
教学难点:培养用画线段图的方法解决问题的意识,并能熟练掌握这种方法。
教学准备:课件。
教学过程:
一、情境出示,设疑激趣
教师:同学们,我们都有一双勤劳的双手,它不仅能写,能画,其实我们的手指中还隐藏了许多数学知识!现在请大家伸出你们的左手,这里有几根手指呢?
预设:5根
教师:那手指与手指间的空隙叫什么呢?
预设:间隔
教师:在数学上,我们通常把两个手指间的空隙叫做间隔。大家观察一下,5根手指之间有几个间隔呢?
预设:4个间隔
教师:现在再看,现在伸出了几根手指呢?
预设:4根间隔
教师:4根手指之间有几个间隔呢?
预设:3个间隔
教师:5根手指之间有4个间隔,4根手指之间有3个间隔,你们发现手指数和间隔数之间有数量关系了吗?
预设1:手指数比间隔数多1。
预设2:间隔数比手指数少1.
教师:那你能不能用数学式子来表示手指数与间隔数的.关系呢?
预设1:手指数=间隔数+1。
预设2:间隔数=手指数-1.
教师:连手上都有这么多数学奥秘,看来数学真是无处不在!这节课我们就来研究跟“间隔”有关的植树问题。(板书课题)
二、引入新知,经历过程,感受方法
教师:请看,请大家默读一下:(课件出示问题)。
引例:同学们准备在全长20米的小路一边植树。每隔5米栽一棵(两端要栽)那么这条路的一边将被树隔成了几段?
教师:告诉我们 哪些条件?(提问)要求什么问题?(提问)
教师:同学们先用尝试用线段图来表示他们之间的关系。(学生动手并提问完成)
教师:这里的有几个间隔?
预设:4个
教师:那你们能不能用一个数学式子来表示?
预设:20÷5=4
教师:20表示什么?5表示什么?4表示什么?(分别提问)
预设:20表示这条路的长度(一般我们把它称为总长),5表示每隔5米栽一棵(我们一般把它称为间隔长),4表示有4个间隔。
教师:4个间隔相当于4段,所以我们数学上通常把有几段称为段数。所以4后面的单位是段。因此我们就得到了公式:全长÷间隔长=段数(提问)。根据除法算式中的关系,间隔长该怎么求?(提问)段数该怎么求?(提问)
教师:那现在如果我想在这条路上种树,一共需要几棵树苗呢?
预设:5棵。
教师:怎么列数学关系式?(提问)
预设:4+1=5(棵)
教师:为什么这样列呢?
预设:因为两端都栽。
教师:你们都跟他一样吗?所以你发现了树的棵树与段数之间的关系了吗?(提问推出棵树与段数的两个公式)
教师:刚才我们是在20米长的路上种树,那现在如果在100米长的路上种树呢?你还会吗?请看例1(课件出示例1)。大家在书本上完成。
例1:同学们在全长100 m的小路一边植树,每隔5 m栽一棵(两端要栽)。一共要栽多少棵树?
(请同学上台展示)
三、利用新知,解决问题
教师:连例题都难不倒你们!同学们真是太聪明了!可是,在“植树问题”中,一定要是“树”吗?除了“树”,还能换成别的事物吗?大家请看(出示生活中的图片实例)可见植树问题的应用领域是非常广泛的,下面就请大家应用刚才学的知识帮老师解决几个问题。
教师:今年的圣诞节刚结束,为了度过一个美好的圣诞节,张老师前几天在家可花了不少的心思!你们看——(分别出示3道练习)
练习1.我买了装礼物的袜子,像这样每两只袜子之间隔0.5米,挂成一排长8米(两端都挂),一共买了几只袜子?
教师:现在老师要把题目难度加大。(做完的同学可以把你的想法跟同桌说说)
练习2.我又买了21只铃铛,挂成一排,长6米(两端都挂),每两只铃铛之间要隔几米?
练习3.我还买了像圣诞树的衣服来装扮,15人排成一排,迎接圣诞老人(两端都排),每两个人之间隔2米,这个队伍有几米呢?
四、回顾思考,全课总结
教师:通过这一节的学习,你有什么收获?
思考:假如只栽一端或两端都不栽,那又会是什么情形呢?同学们课后去探究吧!
五、逆向思考,拓展新知
教师:最后老师有一个难度很大的题目想留给同学们回家思考!请看:
练习4.在圣诞节这天,老师看见100位圣诞老人一起来给我们送礼物,他们并列排成两队(两端都排),每前后两个圣诞老人之间相距1米,则这个队伍排了有多长?
六、布置作业
《植树问题》教学设计11
教材分析:
植树问题”是人教版新课程标准实验教材五年级上册“数学广角”的内容。教材将“植树问题”分为两端都栽、只栽一端、两端都不栽、环形情况以及方阵问题等几个层次,这节课主要是教学两端都栽的植树问题,通过教学向学生渗透复杂问题从简单入手的思想。教材以学生比较熟悉的植树活动为线索,让学生选用自己喜欢的方法来探究栽树的棵数和间隔数之间的关系,经历猜想、试验、推理等数学探索的过程,并启发学生透过现象发现其中的规律,建立数学模型,再利用规律回归生活,解决生活实际问题。
学情分析:
从学生的思维特点看,五年级学生仍以形象思维为主,但抽象思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。这部分内容放在这个学段,说明这个内容本身具有很高的数学思维和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。
设计理念:
新课程标准要求,“数学教学必须从学生熟悉的生活情境和感兴趣的事物出发,为他们提供观察和操作的机会,使他们有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力”。因此在设计这节课时,我主要运用这样的教学理念:以问题情境为载体,以认知冲突为诱因,以数学活动为形式,使学生经历生活数学化,数学生活化的全过程,从中学到解决问题的思想方法。以此为基础,根据学生的认知规律,我设计了以下几个环节。
一、通过观看图片为起点,以学生熟悉的手为素材,让学生感知间隔以及植树与数学的联系。
二、以一道植树问题为载体,营造突破全课教学重点及难点的高潮。
三、以生活中植树问题的应用为研究对象,引导学生了解植树问题的实质。
四、多角度的应用练习巩固,拓展学生对植树问题的认识。
教学目标:
一、知识与技能性:
1.利用学生熟悉的生活情境,通过动手操作、小组合作的实践活动,让学生发现间隔数与植树棵数之间的关系。
2.通过小组合作、交流,使学生能理解间隔数与植树棵数之间的规律。
3.能够借助图形,利用规律来解决简单植树的问题。
二、过程与方法:
1.进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。
2.渗透数形结合的思想,培养学生借助图形解决问题的意识。
3.培养学生的合作意识,养成良好的交流习惯。
三、情感态度与价值观
通过实践活动激发热爱数学的情感,感受日常生活中处处有数学、体验学习成功的喜悦。
教学重难点:
一、教学重点
1、引导学生在观察、操作和交流中探索并发现两端都栽的情况下间隔数与棵数的规律,并能运用规律解决实际问题.
2、运用规律解决类似的实际问题的方法。
二、教学难点
理解间隔与棵树之间的规律(棵数=间隔数+1、间隔数=全长÷间隔长)并能运用规律解决抽象的植树问题。
教学方法:
1、采用手指引出间隔,让学生理解间隔,引出与间隔有关的植树问题
2、分组探究,发现规律,建立数学模型
3、运用规律,解决问题
4、回归生活,实际应用
教学准备
PPT课件 多媒体设备
教学过程
一、新授
1.照片引发的思考
师:植树是一个非常有意义的活动,它不仅能够绿化环境,净化空气,使我们在劳动中得到锻炼,而且,在植树的过程中还蕴含着很多很多的数学问题,怎么样有兴趣探讨吗?
在学习之前先学习一下和植树问题相关的知识 出示图片(让学了解间隔和间距)
师:课件:在100米长的小路一边种树,每隔5米种一棵。(两端都栽)一共需要栽多少棵? (指名大声朗读)
师:(生读完)说说吧学校植树都有哪些要求(指名回答)
师:每隔5米种一课
师:每隔五米指的是什么(点名回答)
生:间隔
师:这个词不错(板书间隔)。间隔指的是什么?
生:两棵树之间的距离
师:学校要求两棵树之间的距离是多少?
生:5米
师:还有哪些要求吗?
生:两端都要栽。
师:这个要求也很重要(板书两端都要栽)
说说是什么意思?
生:两头都要栽
师:你能用手比划比划吗?
生:能
师:还有什么要求吗?
生:在100米的小路的一边
师:强调一边就是一行
让学生试着独自完成提前的题卡(老师巡视找到不一样的结果20、21、22让他们写在黑板上)
师:做完了吗
生:做完了
师:做完了,看黑板,同样的要求出现了三种不同的答案,同意20的举手21的举手22的举手!那学校到底该买多少树苗呢?
三、合作探究、寻找规律
1、小组探究,给予充分的时间。
那咱们就4个人一个小组探究一下这个问题,听要求,画一画,摆一摆或者模仿实际种一种!开始吧(这时教师下去指导巡视)
师:大家往前看,大家探究出来结果了吗?
学校到底需要买多少棵树?谁来说?(点名回答)
生:我们小组讨论的结果是21棵。
师:同学们对于这个小组讨论的结果21棵你们同意吗?
生:同意
师:大家都是正确的
你们小组使用什么样的方法得出结论的呢?
生:画线段
师:愿意展示给大家看吗?
大家注意听,看看这位同学的方法和你们的方法有什么不一样的`地方?
生:总结先画一条线段表示100米,100除以5是20个间隔
师:是20个间隔吗?你带着同学数一数。20个间隔没错,那一定是21棵树吗?
生:最后一棵没加上
师:你把什么当成小树啦?
生:线段上的小端点
师:数一数是21个吗?
生:是
师:听明白了吗?有什么想问问他的吗?
还有没有其他的方法?
生:摆铅笔,2根1个间隔3根2个间隔4根3个间隔5根4个间隔
师:为什么加一呀
生:最一开始的一根或者最后一根没算
师:也就是学校要求两端都要栽
师:当做两端都要栽的问题时 间隔数+1=棵数
师:把复杂的问题简单化这种思想很可贵,发现规律,其他的组也是这么考虑的吧!
看看这一规律的发现过程出示ppt
棵数=间隔数+1
间隔数=全长÷间隔长
师:请同学们很自豪的把自己总结的规律读一遍。
一共需要多少棵树苗。(学生操作、思考、教师巡视)
师:有答案了吗?谁愿意展示一下你的劳动成果,你是怎样想的?你能在黑板上来“改一改”吗?
师:6棵树几个间隔7棵呢99棵呢200棵呢
8间隔几棵树呢50个间隔呢1000个间隔呢
师:植树问题不仅能解决植树问题还能解决生活中的实际问题比如说安路灯
在一条全长2千米的街道两旁安装路灯(两端也要安装),每隔50m安一盏。一共要安装多少盏路灯?(找同学朗读)能解决吗?巡视过程中找41,82两个答案
师:同学们算完了吗?看大屏幕(展示两个答案)你们同意那个?强调两旁 乘2
这个同学的错误正好提醒了我们做这类题的时候一定要注意两旁 两旁需乘2同意吗同学们?
师:今年雾霾挺严重的刚刚还因为雾霾放了假所以呀
北辰区政府为了减少尾气排放,减少污染,方便市民出行,为北辰人民新开设一条公交线路604路,从新河桥到东站后广场共有18站,相邻两站的距离大约是700米,这条线路大约是多少千米?
能解决吗?写在题卡上 做完了同桌互相检查(老师下去辅导)
师:谁说说你是怎么样算的?
生:18-1求出间隔数
700×17=11900(米)
11900米=11.9千米
师:都对了吗?
生:做对了
师:你们家里都有钟表吗?听过钟声吗?你听当当这是几时?
生:2时
师:当当当,这是几时?几个间隔?在钟声里面也有数学问题一起看看谁能大声朗读?(出示ppt)广场上的大钟5时敲响5下,8秒敲完。 12时敲12下,需要多长时间敲完?
师:能试着解决吗》做在题卡上,有困难了放在我们小组内解决,看看能不能解决。(巡视)同学们有结果了吗?哪个小组愿意汇报?
生:5-1=4 (个) 8÷4=2 (秒)12-1=11(个)11×2=22(秒)
师:同学们说得真好
总结:这节课大家都有什么收获?
两端都要植:棵数=间隔数+1
间隔数=棵数-1
板书设计:
植 树 问 题
两端都栽 棵树 间隔数
《植树问题》教学设计12
设计说明
“植树问题”对于学生来说比较抽象,学生接受起来较为困难,本节复习课,就是让学生在已有知识的基础上,巩固所学,理清思路,让学生的数学能力得到进一步的提高。
1.通过对比,提高学生解决问题的能力。
植树问题的复习分为三个类型:两端都栽树、两端都不栽树和在封闭路线上栽树。由于它们之间都存有共性:都隐藏着间隔数与棵数之间的关系,因此,本节课把所有类型的植树问题归纳在一起,通过观察比较,得出公式,总结这一类问题的解决方法和策略。最后能够运用所学知识解决所有和植树问题相关的实际问题。
2.通过变式练习,培养学生灵活运用所学知识的能力。
在学生进一步明确了三个类型的“植树问题”的.解决方法和策略之后,设计了不同难易程度的练习,让学生根据前面发现的规律来解决。同时做好植树问题和生活实际问题的对比沟通,培养学生的应用意识,提高学生学习数学的兴趣,提高学生运用所学知识解决实际问题的能力。
课前准备
教师准备:PPT课件、课堂练习卡
学生准备:课堂练习卡
教学过程
⊙创设情境,导入复习
第七单元,我们共同研究了“植树问题”,想一想,“植树问题”存在几种情况,它们的关系是怎样的呢?指名回答后,老师小结。
(1)在线段上栽树。
①两端都栽:棵数=间隔数+1
②两端都不栽:棵数=间隔数-1
(2)在封闭路线上栽树:棵数=间隔数。
设计意图:通过引导学生进行知识回顾,进一步理解植树问题中存在的规律,为下一步分层练习作铺垫。
⊙分层练习,强化提高
1.基本练习。
(1)在练习本上画一条10厘米长的线段,每隔2厘米画一朵小花,两端都要画,一共可以画多少朵小花?
(2)一个堤坝长200米,沿堤坝栽一行小树,每隔10米栽一棵,只有一端栽,一共可以栽多少棵?
(3)在一段公路的一边栽95棵树,两端都栽,每两棵树之间相距5米,这段公路全长多少米?
(4)公园大门前的公路长80米,要在公路两边栽上树,每两棵树相距8米(两端也要栽)。园林工人共需要准备多少棵树?
(学生自由解答,小组内交流,然后教师组织全班交流,指名学生回答,其他同学纠正错误)
师:同学们真聪明,计算得这么准确,下面老师又为你们准备了一些题目,有没有信心完成?
2.综合练习。
一个挂钟,1时敲1下,3时敲3下,12时敲12下,当这个挂钟3时时敲3下共用了4秒钟。当12时时敲12下要用多少秒?
(1)读题明确题意。
(2)分组合作探究。
设计意图:通过分层练习,层层深入地回顾了解决问题的步骤和方法,从而进一步提高了学生的解题能力。
⊙全课总结
通过这节课的复习,我们对植树问题进行了回顾,大家有什么收获呢?
⊙布置作业
1.校园里有一段长80米的路,在路的一侧栽松树,每隔5米栽一棵,一共可以栽多少棵?
2.要在100米的马路两旁栽树,每隔5米栽一棵,一共可以栽多少棵?
3.一个圆形花圃周围长40米,沿花圃一周每隔4米插一面红旗,每两面红旗的中间插一面黄旗,花圃周围各插了多少面红旗和黄旗?
4.一个小朋友以相同的速度在路上行走,从第1棵树走到第17棵树需要16分钟。如果这个小朋友走了30分钟,应走到第几棵树?
《植树问题》教学设计13
课题
植树问题(二)
课时
1
班级
四年级
编写者
林英
一、教材内容分析
人教版四年级下册第8单元书120页
二、教学目标(知识与技能、过程与方法、情感态度与价值观)
1、使学生理解并掌握一个封闭图形的植树问题的规律。
2、学会用不同的方法分析具体的数学问题。
3、经历数学问题的`探究过程,体验用不同的思路解决问题的方法。
4、沟通数学知识与生活之间的密切联系,激发学生的学习兴趣,培养学生的动手操作能力,发展学生的发散思维。
三、学习者特征分析
学生已经初步掌握关于一条线段的植树问题,但是,这个内容学生理解起来还是比较困难,特别是中下的学生。因此,在这基础之上,要让学生借助围棋盘,动手摆一摆,通过小组合作来一起探讨封闭曲线中的植树问题。
四、教学策略选择与设计
自主探索合作交流总结规律
五、教学环境及资源准备
投影仪,每小组一副围棋。
六、教学过程
教学过程
教师活动
预设学生行为
设计意图及资源准备
一、创设情境
教师投影出示教材第120页例3情境图。
教师:图上两位小朋友在干什么?(下围棋)
你对围棋有哪些了解?
师:在这小小的围棋盘下可有不少数学问题呢!
板书课题:植树问题(二)
让学生畅所欲言。
吸引学生的注意力,激发学生的学习兴趣。
二、探究新知
(1)教师投影出示围棋盘。
师:在围棋盘上一个点可以放一个子。
(2)出示例3。
围棋盘的最外层每边能放19个棋子。最外层一共可以摆多少个棋子?
师:同学们算得都正确。还有其他的方法吗?
师:你发现了什么?
学生通过分析比较会发现:围棋盘最外层摆的棋子数等于最外层每两个棋子间的间隔数。
(1)学生读题,理解题意。
(2)动手在围棋盘上摆一摆,数一数,小组合作探究。
(3)学生汇报。
通过动手摆,认真的观察判断,分析比较,从中发现规律。培养学生的发散思维,动手能力。
三、反馈应用
(1)教材第121页做一做第1题。
教师投影出示情境画面,出示第1题。
(2)教材第121页“做一做”第2题。
①讨论:可以怎么摆放?
②最少需要多少盆花?
(3)教材第121页“做一做”第3题。
学生读题,理解题意。
学生汇报。
学生在小组中合作完成,然后教师指名汇报,全班集体订正。
四、全课小结
通过今天的学习活动,你有什么收获?
板书设计:植树问题(二)
例3:
a.19×2+17×2=72(个)
(19+17)×2=72(个)
b.18×4=72(个)
c.17×4+4=72(个)
封闭图形:植树棵数=间隔数
《植树问题》教学设计14
一、教学内容
教科书P117例1
二、教学目标
1、利用熟悉的生活情境,通过动手操作等实践活动,理解并掌握“两端都要种”的植树问题中间隔数与植树棵数之间的规律。
2、在合作探究中解决问题,建构数学模型,感受数学的简化思想和应用价值。
3、渗透数形结合的思想,培养学生借助线段图来解决问题的意识。
三、教学重点、难点
1、重点:通过探究,发现两端都栽的情况中“棵数=间隔数+1”
2、难点:利用规律来解决生活中的实际问题。
四、教学准备
小棒、课件、练习本、表格
五、教学过程
(一)创设情境,引入学习
1、每个人都有一双灵巧的小手,知道吗,在你的手上,还藏着数学知识呢?请伸出左手找找看,你找到了吗?
(预设生:有5根手指生:有4个空)
像刚才同学们所提到的2根手指间的空格,在数学上我们叫做间隔(板书间隔)
2、生活中很多地方也存在着间隔,你能找到吗?
(预设生1:树木之间有间隔生2:队伍之间生3:栏杆之间也有)指名3人
3、老师也收集了一些(播放课件)
过渡:看来与间隔有关的事物太多了,很有研究的必要,今天这节课我们就来研究与间隔有关的植树问题。(板书课题)
(二)合作探究“两端都栽”的规律
1、①课件出示请看题“学校准备在一条长20米的小路一旁栽树,每隔5米栽一棵(两端都栽),一共需要多少棵树苗?
谁能响亮的读题?
②从题中你了解到了哪些数学信息?
预设生1这条小路总长20米生2每隔5米种一棵(5米就是我们所说的间隔长)生3:两端都栽(什么是两端都栽?2人说)(板书两端都栽)生4:一旁
③能试着列列算式来解决吗?把你的想法列在练习本上。(指名板演)
(预设生1:20÷5+2=6(棵)生2:20÷5+1=5(棵))
还有不一样的吗?也上来写写
说一说你的想法
④我发现你们虽然意见不统一,但是有一步却是相同的,找到了吗?20÷5是什么意思?
指名2人说(板书总长÷间隔长=间隔数)齐读1次
2、①到底哪种答案是正确的,你有什么方法来验证一下,同桌一起讨论一下。
(预设生1:用手掌中的间隔现象来说明生2:用小棒来模拟种一种
生3:画线段图来验证一下)
方法有很多,但是画线段图是最常见、最一般的方法。
②你打算怎么画,能介绍一下吗?
生介绍,师板画
介绍,我们可以取任意长代表5米,这样5米5米地画,一直画到20米,(出示课件)几个间隔,几棵小树?(4个间隔5棵数)
通过线段图,我们清楚的看出正确答案应该是20÷5+1=5(棵))
3、①如果老师将总长和间隔长进行变换,你能自己迅速画出线段图得出间隔数和棵数吗?
两端都栽的情况下
同桌合作完成表格第2、3两行。
②展示1个学生的作品,课件出示
观察大屏幕上的'数据,想一想在两端都栽的情况下,棵数与间隔数存在怎样的规律?
指名3人说(在说时强调条件是两端都栽的情况下)(板书棵数=间隔数+1间隔数=棵数-1)加上条件再齐读一次
4、验证规律
①在两端都栽的情况下,是不是棵数与间隔数都存在这种规律呢?想自己再来验证一下吗?
②请在表格的剩余两行自设总长和间隔长画一画线段图(注意你所设制的总长必须要能被间隔长整除)想一想怎样才能提高速度,间隔数太多了好不好?
③同桌再次合作,教师巡视
④汇报,教师记录结果
⑤通过这些数据,你有什么要说的吗?为什么棵数总比间隔数多1?
700个间隔,几棵树?1000棵数几个间隔?
(三)练习生活,拓展应用
生活中有很多类似问题也能用植树问题的规律来解决,比如装路灯,设车站,做楼梯,锯木头等等,一起去看看吧!
1、在一条全长400米的街道两旁挂灯笼,每隔8米挂一个(两端都挂),一共需要多少个灯笼?女生读题学生独立列式,说一说你的理解
2、刘翔一共要跨10个栏,每两个栏之间的间隔长是10米,求从第一个栏到最后一个栏一共有多长?男生读题刚才求的是棵数,现在求的是(总长)要求总长必须知道什么条件独立列式,汇报结果,说说理解。
3、你看过钟表吗?
你听——当当,这是几时;当当当这是几时,有几个间隔?
在钟声里也有数学问题,一起去看看吧!
出示广场上的大钟5时敲响5下,敲响第一下到第五下用了8秒,12时敲响了12下,需要多长时间?
(四)课堂小结,留下悬念
1、这节课同学们都表现得非常认真,积极,想一想在这节课上你有什么收获?
2、收获那么多,老师真为你感到高兴,其实植树问题中还有很多数学问题,你比如说一头栽一头不栽,两头都不栽,在封闭图形上栽等等,他们又存在怎样的规律?就让我们带着对这些问题的思考迎接下节课的学习吧!
《植树问题》教学设计15
教材分析
《植树问题》它原本属于经典的奥数教学内容,新课程教材把它放在了“数学广角”中让所有的学生学习,说明这一教学内容本身具有很高的数学思维含量和很强的探究空间,既需要教师的有效引导,也需要学生的自主探究。
学情分析
从学生的思维特点来看,四年级学生仍以形象思维为主,但抽象逻辑思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类整理的数学活动经验。因此,在本课的设计中,解题不是主要的教学目的,主要的任务是以“植树问题”为载体,让学生经历猜想、验证、推理等数学探究的过程,寻找解决问题的策略,抽取数学模型,体验数学思想方法在解决问题中的应用。
教学目标
1、通过探究发现一条线段上两端要种的'植树问题的规律。
2、使学生经历和体验“复杂问题简单化”的解题策略和思想方法。
3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。
教学重点和难点
教学重点:理解棵数与间隔数之间的关系。
教学难点:应用植树问题的数学模型来灵活解决一些相关的实际问题。
【《植树问题》教学设计】相关文章:
《植树问题》 03-10
《植树问题》 05-17
《植树问题》的 05-16
植树问题 06-13
数学植树问题 08-25
数学《植树问题》 04-21
【优】植树问题 07-09
【实用】植树问题 05-18
植树问题 [实用]05-18
(优)《植树问题》的 05-16