首页 申请书推荐信华体会电子竞技 通知工作总结华体会体育2串1 策划书工作报告合同演讲稿职业规划
当前位置:98158范文网>教育范文>教学设计>二元一次不等式教学设计

二元一次不等式教学设计

时间:2024-07-09 08:43:29 教学设计 我要投稿
  • 相关推荐

二元一次不等式教学设计

  作为一名教职工,时常需要编写教学设计,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。那么写教学设计需要注意哪些问题呢?下面是小编整理的二元一次不等式教学设计,希望能够帮助到大家。

二元一次不等式教学设计

二元一次不等式教学设计1

  教学目标

  1、认识二元一次方程和二元一次方程组.

  2、了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解.

  重点、难点

  重点:理解二元一次方程组的解的意义

  难点:求二元一次方程的正整数解

  教学过程

  一、复习导入

  什么是一元一次方程?“元”指什么?“次”指什么?

  什么是方程的解?

  设计意图:通过学生复习以前的内容,知道用元与次的含义,为这节课所学的二元一次方程组奠定基础。

  二、观看视频

  观看洋葱视频关于二元一次方程组的内容,通过熟悉的鸡兔同笼问题来引发思考。

  视频内容

  设计意图:用视频吸引学生注意力,引起学生的认知冲突,从而激发学生的学习兴趣和求知欲望,通过视频内容,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。

  三、探究新知

  根据视频内容归纳出二元一次方程的定义:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程.

  把两个二元一次方程合在一起,就组成了一个二元一次方程组.

  提问:对比两个方程,你能发现它们之间的关系吗?

  师生共同总结二元一次方程组的概念像这样方程组中有两个个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,像这样的方程组叫做二元一次方程组.

  探究二元一次方程组的解:

  满足x+y=10的值有哪些?请填入表中:

  使二元一次方程两边相等的未知数的值,叫做二元一次方程的解,记作.

  满足方程2x+y=16且符合问题的实际意义的x 、y的值如下表:

  不难发现x=6,y=4既是x+y=10的解,也是2x+y=16的解,也就是说是这两个方程的公共解,我们把它们叫做方程组的解。

  归纳二元一次方程组的解的定义:二元一次方程组中的两个方程的公共解叫做二元一次方程组的解.

  思考:3x+y=10的解有多少个?一个解有几个数?正整数解有几个?

  带着问题让学生观看洋葱数学视频二元一次方程组的解

  视频内容

  设计意图:现代数学教学论指出,数学知识的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过学习用坐标表示平移观察分析、独立思考、小组交流等活动,引导学生归纳。

  四、例题讲解

  例、若方程2x2m+3+3y3n-7=0是关于x、y的二元一次方程,求m+n的值。

  例2、暴风雨即将来临,一群蚂蚁正忙着搬家.其中有大蚂蚁和小蚂蚁,已知大小蚂蚁总共有1 00只,小蚂蚁一次只能搬一粒食物,大蚂蚁一次能搬两粒,一场忙碌过后,洞里的160粒食物刚好一次被安全转移,求大小蚂蚁各有几只?

  例3、

  学生思考,试着解答,最后共同宣布答案。

  设计意图:在例题讲解过程中,让学生充分活动起来,通过例题探究来进行总结,不要让学生死记硬背,重点在理解,会灵活运用。

  五、随堂练习

  1.下列方程中,是二元一次方程的是( )

  A.3x-2y=4z B.6xy+9=0

  C.+4y=6 D.4x=

  2.下列方程组中,是二元一次方程组的是( )

  A. B.

  C. D.

  3.在方程(k-2)x2+(2-3k)x+(k+1)y+3k=0中,若此方程为关于x,y的二元一次方程,则k值为( )

  A.-2 B.2或-2 C.2 D.以上答案都不对

  4.二元一次方程x-2y=1有无数多个解,下列四组值中不是该方程的解的是( )

  A、B、C、D、

  5.二元一次方程组的解为( )

  A. B. C. D.

  6.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有( )

  A.1种B.2种C.3种D.4种

  设计意图:几道练习题由浅入深、由易到难、各有侧重,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,升华知识

  六、拓展延伸

  1.有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨,设一辆大货车一次可以运货x吨,一辆小货车一次可以运货y吨,根据题意所列方程组正确的是( )

  A. B.

  C. D.

  2.甲、乙两人共同解方程组由于甲看错了方程①中的a,得到方程组的解为乙看错了方程②中的b,得到方程组的.解为试计算a2 016+(-b)2 017.

  设计意图:这个环节是巩固本课知识点,通过设置练习,来检测学生的掌握情况,在这部分的设计中,主要是发挥学生作为教学主体的主动性,让学生感受学习的乐趣和成功的喜悦。

  七、课堂小结

  以提问进行:

  (1)、二元一次方程(组)的特征是什么?

  (2)、二元一次方程组的解要满足什么条件?

  设计意图:通过共同小结使学生归纳、梳理总结本节的知识、技能、方法,将本课所学的知识与以前所学的知识进行紧密联结,再一次突出本节课的学习重点,改善学生的学习方式。有利于培养学生数学思想、数学方法、数学能力和对数学的积极情感.同时为以后的学习作知识储备.

  八、华体会可以注销账号不

  1.概念课教学模式:本节课的主要内容是二元一次方程(组)的有关概念,设计时按照“实例研究,初步体会——比较分析,把握实质——归纳概括,形成定义——应用提高,发展能力”的思路进行,让学生体会到是因为“需要”而学习新知识,逐步渗透应用意识。

  2.类比法的运用:二元一次方程及其解的意义类比一元一次方程学习,一方面加深学生对于方程中“元”与“次”的理解,另一方面易于理清一元一次方程与二元一次方程“解”的相关知识的异同,同时为二元一次方程组相关概念扫清障碍。

  3.分层递进,循环上升:学生对知识的理解,教师对学生的要求,都是由低到高,逐步提升,题目的设计从单一知识点的直接运用,逐渐到多个知识点的灵活运用,给学生设计必要的台阶,使其一步步向前,最终达到教学目标。

二元一次不等式教学设计2

  一.教学内容分析:

  1.本节课内容在整个教材中的地位和作用.

  必修五第三章不等式第二节一元二次不等式及其解法共有三个课时,本节课是第一课时,教学内容的地位体现在它的基础性,作用体现在它的工具性.一元二次不等式的解法是初中一元一次不等式或一元一次不等式组的延续和深化,对已学习过的集合知识的巩固和运用具有重要的作用.许多问题的解决都会借助一元二次不等式的解法.因此,一元二次不等式的解法在整个高中数学教学中具有很强的基础性,体现出很大的工具作用. 2.教学目标定位.

  根据教学大纲要求、高考考试大纲说明、新课程标准精神、高一学生已有的知识储备状况和学生心理认知特征,我确定了四个层面的教学目标.第一层面是面向全体学生的知识目标:熟练掌握一元二次不等式的解法,正确理解一元二次方程、一元二次不等式和二次函数三者的关系.第二层面是能力目标,培养学生运用数形结合与分类讨论等数学思想方法解决问题的能力,提高运算和作图能力.第三层面是德育目标,通过对解不等式过程中等与不等对立统一关系的认识,向学生逐步渗透辨证唯物主义思想.第四层面是情感目标,在教师的启发引导下,学生自主探究,交流讨论,培养学生的合作意识和创新精神. 3.教学重点、难点确定.

  本节课是在复习了一元二次方程和二次函数之后,利用二次函数的图象研究一元二次不等式的解法.只要学生能够理解一元二次方程、一元二次不等式和二次函数三者的关系,并利用其关系解不等式即可.因此,我确定本节课的教学重点为一元二次不等式的解法,关键是一元二次方程、一元二次不等式和二次函数三者的关系.

  二.教法学法分析:

  数学是发展学生思维、培养学生良好意志品质和美好情感的重要学科,在教学中,我们不仅要使学生获得知识、提高解题能力,还要让学生在教师的启发引导下学会学习、乐于学习,感受数学学科的人文思想,使学生在学习中培养坚强的意志品质、形成良好的道德情感.为了更好地体现课堂教学中“教师为主导,学生为主体”的教学关系和“以人为本,以学定教”的教学理念,在本节课的教学过程中,将紧紧围绕教师组织——启发引导,学生探究——交流发现,组织开展教学活动.我设计了①回忆旧知,服务新知,②创设情境,提出问题,③合作交流,探究新知,④数学运用,深化认知,⑤练习检测,反馈新知,⑥谈谈收获,强化思想,⑦布置作业,实践新知,环环相扣、层层深入的教学环节,在教学中注意关注整个过程和全体学生,充分调动学生积极参与教学过程的每个环节.

  三.教学过程分析:

  (一)联系旧知,构建新知

  设置一系列的问题唤起学生对旧知识的回忆.

  问题1:一元二次方程的解法有哪些呢?

  (意图:让学生回顾一元二次方程的解法,为解一元二次不等式做准备.)

  问题2:同学们还记得二次函数吗?二次函数的形式是怎样的?你记得二次函数的性质吗?

  (意图:引导学生从图象的角度出发,并启发学生二次函数的图象是一条抛物线,其开口方向由二次项系数决定,为突出重点做准备)

  (二)创设情景,提出问题

  1、让学生动手画直角坐标系,然后沿x轴方向上下对折这张纸,观察它们的值有什么特点?

  22、请在刚才的坐标系中画出y=x-7x+6的图像

  问题1:

  (1)x轴上方有无图像?若有请用红线描出。这部分图像对应的y值如何?

  (2)x轴下方有无图像?若有请用蓝线描出。这部分图像对应的y值如何?

  (3)红线与蓝线有无交点?若有请用绿色标出。

  (4)你能找出上述各种情况的x的取值范围吗?请在图中写出。

  问题2:你能说一说这两个不等式有何共同特点么?

  (1)含有一个未知数x;

  (2)未知数的最高次数为2。通过两问题得出一元二次不等式的概念:一般地,只含有一个未知数,且未知数的最高次数为2的不等式,叫做一元二次不等式。

  问题3:判断下列式子是不是一元二次不等式?

  问题4:一元二次函数、一元二次方程之间有何联系呢?

  一元二次方程的解即一元二次函数图象与x轴交点的横坐标,也就是说方程的解即对应函数的零点。

  问题5:一元二次不等式如何求解呢?

  (三)合作交流,探究新知

  1. 探究一元二次不等式x2x20的'解.

  容易知道:一元二次方程x2x20的有两个实数根:x11或x22. 二次函数yx2x2与x轴有两个交点:1,0和2,0. 思考1:观察图象一元二次方程的根与二次函数之间有什么关系? 思考2:观察图象,当x为何值时,y0;

  当x为何值时,y0; 当x为何值时,y0.

  (设计意图 : ①体现学生的主体性;②有利于加强对图象的认识,从而加强数形结合的数学思想 ;③有利于加强学生理解一元二次不等式的解相关的三个因素;④为归纳解一元二次不等式做好准备.根据前面探讨的问题引导学生归纳一元二次不等式的解.)

  2. 探究一元二次不等式ax2bxc0或ax2bxc0a0的解法. 组织讨论:从上面的例子出发,综合学生的意见,可以归纳出确定一元二次不等式的解集,关键要考虑:

  2抛物线yaxbxc与x轴的相关位置的情况,也就是一元二次方程2ax2bxc=0的根的情况,而一元二次方程根的情况是由判别式b4ac三 3 种取值情况(0,0,0)来确定.

  (设计意图:这里我将运用多媒体图标的形式来展现出其解法思路,学生有一个完整的逻辑思维,让学生在探究中建立知识间的联系,体会数形结合,强调突出本节的难点.)

  (四)数学运用,深化认知.

  2例1.求不等式2x3x20的解集. 2变式为:求不等式2x3x20的解集.

  2例2.解不等式x2x30.

  (设计意图:先让学生来解答例题,若教师巡视、指导,讲评学生完成情况,寻找学生中的闪光点,给予热情表扬.)总结:

  解一元二次不等式的步骤:

  一化:化二次项前的系数为正(a>0).二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.(五)练习检测,巩固收获

  (设计意图:为了巩固和加深一元二次不等式的解法,让学生学以致用,接下来及时组织学生进行课堂练习.然后就学生在解题中出现的问题共同纠正.)

  (六)归纳小结,强化思想

  设计意图:梳理本节课的知识点,总结一元二次不等式解法的步骤:“一化,二判,三求根,四画图,五写解集”的口诀来帮助学生记忆和归纳,让学生掌握严谨的做题方法,知晓本节课的重难点.

  (七)布置作业,拓展延伸

  必做题:课本第80页习题A组 1,2.选做题:

  (1)若关于m的一元二次方程x

  2(m1)xm0有两个不相 等的实数根,求m的取值范围.2

  (2)已知不等式xaxb0的解集为x2x3,求a,b的

  值.(设计意图:以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的反馈,选做题是对本节课知识的延伸,整体的设计意图是反馈教学,巩固提高.)

  四.教学总结

  本节课的所有内容以习题的形式展现给学生,学生始终在解题中探究,在解题中发现,学生参与教学的全过程,成为课堂教学的主体和学习的主人,而老师只须时刻关注学生的活动过程,不时给予引导,及时纠正.

二元一次不等式教学设计3

  一 内容分析

  本节课内容的地位体现在它的基础性,作用体现在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式组的延续和深化,对已学习过的集合知识的巩固和运用具有重要的作用,也与后面的函数、数列、三角函数、线形规划、直线与圆锥曲线以及导数等内容密切相关。许多问题的解决都会借助一元二次不等式的解法。因此,一元二次不等式的解法在整个高中数学教学中具有很强的基础性,体现出很大的工具作用。

  二 学情分析

  学生已经掌握了高中所学的基本初等函数的图象及其性质, 能利用函数的图象及其性质解决一些问题。学生知道不等关系, 掌握了不等式的性质, 通过这部分内容的学习,学生将学会利用二次函数的图象, 通过数形结合的思想, 掌握一元二次不等式的解法。

  三 教学目标

  1.知识与技能目标:

  (1)熟练应用二次函数图象解一元二次不等式的方法

  (2)了解一元二次不等式与相应函数, 方程的联系

  2.过程与方法:

  (1)通过学生已学过的一元一次不等式为例引入一元二次不等式的有关概及解法

  (2)让学生观察二次函数,在此基础上, 找到一元二次不等式的解法并掌握此解法

  (3)在学生寻找一元二次不等式的过中程中培养学生数形结合的数学思想

  3.情感与价值目标:

  (1)通过新旧知识的联系获取新知,使学生体会温故而知新的道理

  (2)通过对解不等式过程中等与不等对立统一关系的认识,向学生逐步渗透辨证唯物主义思想。

  (3)在教师的启发引导下,学生自主探究,交流讨论,培养学生的合作意识和创新精神。

  四 教学重点、难点

  1.重点

  一元二次不等式的.解法

  2.难点

  理解元二次方程与一元二次不等式解集的关系

  五 教学方法

  启发式教学法,讨论法,讲授法

  六 教学过程

  1.创设情景,提出问题(约10分钟)

  师:在初中,我们解过一元一次不等式,如解不等式x – 1 > 0,现在请同学们先画出函数y = x – 1 的图象,并通过观察图象回答以下问题: 1)x 为何值时,y = 0;2)x 为何值时,y > 0;3)x 为何值时,y < 0;4)一元一次方程x – 1 = 0的根能从函数y = x – 1上看出来吗? 5)一元一次不等式 x – 1 > 0的解集能从函数y = x – 1上看出来吗?

  学生画图,思考。先把问题交给学生自主探究,过一段时间,再小组交流,此间教师巡视并指导。提问学生代表。

  通过对上述问题的探究,学生得出以下结论:

  因为上述方程x – 1 = 0以及不等式x – 1 > 0的左边恰好是上述函数y = x3x – 2 > 0;2)4x23x – 2 = 0的解是x1 =-1/2, x2 = 2.所以2x24x + 1 = 0 的解是x1 = x2 = 1/2, 所以不等式4x22x + 3 < 0, 因为Δ < 0,方程x22x + 3 < 0的解集为空集,即原不等式的解集为空集。

  练习:课本80页练习第1题(1)-(3)【灵活掌握】.师:今天我们这节课的内容有两个: 1)会一元二次不等式的解法 2)理解三个“二次”的关系

  作业:课本第80页习题 A

  4.板书设计

  § 一元二次不等式及其解法

  解不等式x2 – x – 6 > 0, 请先画出二次函数 y = x2 – x – 6的图像,并回答以下问题: 1)x 为何值时,y = 0;y > 0;y < 0;2)一元二次方程x2 – x – 6 = 0的根能从函数 y = x2 – x – 6上看出来吗?一元二次不等式 x2 – x – 6 > 0的解集呢?

  七 华体会可以注销账号不

  组1、2题 例,解不等式:

  1)2x24x + 1 > 0;3)-x2 + 2x – 3 < 0;

  解:1)因为Δ =(-3)2 – 4×2×(-2)= 25 > 0, 方程的2x23x – 2 > 0的解集是{x| x1 <-1 x2=""> 2}.2)因为Δ = 0,方程4x24x + 1 > 0的解集是{x|x ≠ 1/2}.

二元一次不等式教学设计4

  一、教学目标:

  (一)知识与能力目标:(课件第2张)

  1.体会解不等式的步骤,体会比较、转化的作用。

  2.学生理解、巩固一元一次不等式的解法.

  3.用数轴表示解集,加深对数形结合思想的进一步理解和掌握。

  4.在解决实际问题中能够体会将文字语言转化成数学语言,学会用数学语言表示实际的数量关系。

  (二)过程与方法目标:

  1.介绍一元一次不等式的概念。

  2.通过对一元一次方程的解法的复习和对不等式性质的利用,导入对解不等式的讨论。

  3.学生体会通过综合利用不等式的概念和基本性质解不等式的方法。

  4.学生将文字表达转化为数学语言,从而解决实际问题。

  5.练习巩固,将本节和上节内容联系起来。

  (三)情感、态度与价值目标:(课件第3张)

  1.在教学过程中,学生体会数学中的比较和转化思想。

  2.通过类比一元一次方程的解法,从而更好的掌握一元一次不等式

  的解法,树立辩证统一思想。

  3.通过学生的讨论,学生进一步体会集体的作用,培养其集体合作的精神。

  4.通过本节的学习,学生体会不等式解集的奇异的数学美。

  二、教学重、难点:

  1.掌握一元一次不等式的解法。

  2.掌握解一元一次不等式的阶梯步骤,并能准确求出解集。

  3.能将文字叙述转化为数学语言,从而完成对应用问题的解决。

  三、教学突破:

  教材中没有给出解法的一般步骤,所以在教学中要注意让学生经历将所给的.不等式转化为简单不等式的过程,并通过学生的讨论交流使学生经历知识的形成和巩固过程。在解不等式的过程中,与上节课联系起来,重视将解集表示在数轴上,从而指导学生体会用数形结合的方法解决问题。在研究中,鼓励学生用多种方法求解,从而锻炼他们活跃的思维。

  四、教具:计算机辅助教学.

  五、教学流程:

  (一)、复习:

  教学环节

  教师活动

  学生活动

  设计意图

  导入新课

  1.给出方程:(x+4)/3=(3x-1)/2,抽学生演算。(注意步骤)

  2.学生回忆不等式的性质,并说出解不等式的关键在哪里。

  3.让学生举一些不等式的例子。在学生归纳出一元一次不等式的概念后,据情况点评。

  4.新课导入:通过上节课的学习,我们已经掌握了解简单不等式的方法。这节课我们来共同探讨解一元一次不等式的方法。

  5.学生练习,并说出解一元一次方程的步骤。

  6.认真思考,用自己的语言描述不等式的性质,说出解不等式的关键在于将不等式化为x≤a或x≥a的形式。(出示课件第2页)

  7.举出不等式的例子,从中找出一元一次不等式的例子,归纳出一元一次不等式的概念。

  8.明确本课目标,进入对新课的学习。

  9.复习解一元一次方程的解法和步骤。

  10.让学生回顾性质,以加强对性质的理解、掌握。

  11.运用类比思维

  12.自然过度,出示课件第3、4张

  (二)、新授:

  教学环节

  教师活动

  学生活动

  设计意图

  探究一元一次等式的解法

  1、学生观察课本第61页例3,教师说明:解不等式就是利用不等式的三条基本性质对不等式进行变形的过程。提醒学生注意步骤。

  2.分析学生的解答,提醒学生在解不等式中常见的错误:不等式两边同乘(除)同一个负数不等号方向要改变。

  3.激励学生完成对(2)解答,并找学生上讲台演示。

  4.强调在数轴上表示解集时的关键(出示课件第8页)

  5.出示练习(出示课件第9页)

  6.鼓励学生讨论课本第61页的例4。提示学生:首先将简单的文字表达转化成数学语言。(出示课件第10页)

  7.指导学生归纳步骤。

  8.补充适当的练习,以巩固学生所学。(出示课件第12页)

  9.类比解一元一次方程,仔细观察,理解用不等式的性质(3)解不等式的原理,并掌握用数轴表示不等式的解的方法。

  10.学生类比解一元一次方程的步骤

  与解一元一次不等式的一般步骤,同时完成练习。(出示课件第6页)

  11.完成例3(2):2(5x+3)≤x-3(1-2x)的解答。教师提示,组内讨论后,检查自己的解答过程,弥补不足,进一步体会解一元一次不等式的方法。

  12.理解、体会在数轴上表示解集的方法和关键。

  13.学生组内讨论完成。

  14.认真完成对例题的解答,在教师的提示下找到不等量关系,列出不等式:(x+4)/3-(3x-1)/2>1,并求解。.

  15.组内讨论并归纳后,看教师所出示的课件。(出示课件第11页)

  16.认真完成练习。

  17.电脑逐步演示,让学生从演示过程中理解不等式的解法。(出示课件第5张)

  18.巩固对一般解法的理解、掌握。

  19.通过类比归纳,提高学生的自学能力。(出示课件第7页)以订正学生解答。

  20.让学生明白不等式的解集是一个范围,而方程的解是一个值。

  21.培养学生的扩展能力。

  22.类比一元一次方程的解法以加深对一元一次不等式解法的理解。

  23.通过动手、动脑使所学知识得到巩固。

  24.巩固所学。

  (三)、小结与巩固:

  教学环节

  教师活动

  学生活动

  设计意图

  小结与巩固

  1.引导学生对本课知识进行归纳。

  2.学生完成后(出示课件第13、14页)。

  3.练习与巩固。

  1.学生组内讨论小结,组长帮助组员对知识巩固、提升。

  2.学生加强理解。

  3.完成练习:书63页第4题,第5(2、4)题。

  1.培养学生总结、归纳的能力。

  2.点拨学生对知识的理解与掌握。

  3.巩固本课所学。

【二元一次不等式教学设计】相关文章:

一元一次不等式华体会可以注销账号不 01-15

一元一次不等式华体会可以注销账号不 范文04-07

一元一次不等式组华体会可以注销账号不 04-22

二元一次方程组华体会可以注销账号不 05-15

《一次函数与一元一次不等式》华体会可以注销账号不 01-15

不等式的性质华体会可以注销账号不 05-20

《不等式的性质》华体会可以注销账号不 11-06

《不等式的性质》华体会可以注销账号不 05-27

(精华)二元一次方程组华体会可以注销账号不 05-15

Baidu
map