《正比例》教学设计精品
作为一名辛苦耕耘的教育工作者,常常要根据教学需要编写教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。那么优秀的教学设计是什么样的呢?下面是小编整理的《正比例》教学设计精品,仅供参考,欢迎大家阅读。
《正比例》教学设计精品1
教学目标
1、使学生理解正比例的意义、
2、能根据正比例的意义判断两种量是不是成正比例、
3、培养学生的抽象概括能力和分析判断能力、
教学重点
使学生理解正比例的`意义、
教学难点
引导学生通过观察、思考发现两种相关联的量的变化规律,即它们相对应的数的比值一定,从而概括出正比例关系的概念、
教学过程
一、复习准备
口答(课件演示:成正比例的量)
1、已知路程和时间,怎样求速度?
2、已知总价和数量,怎样求单价?
3、已知工作总量和工作时间,怎样求工作效率?
二、新授教学
(一)导入新课
这些都是我们已经学过的常见的数量关系、这节课,我们继续研究这些数量关系中的一些特征、
(二)教学例1、(课件演示:成正比例的量)
1、一列火车1小时行驶90千米,2小时行驶180千米,3小时行驶270千米,4小时行驶360千米,5小时行驶450千米,6小时行驶540千米,7小时行驶630千米,8小时行驶720千米
2、出示下表,并根据上述内容填表、
《正比例》教学设计精品2
教学目标
1.使学生理解正比例的意义.
2.能根据正比例的意义判断两种量是不是成正比例.
3.培养学生的抽象概括能力和分析判断能力.
教学重点
使学生理解正比例的意义.
教学难点
引导学生通过观察、思考发现两种相关联的量的变化规律,即它们相对应的数的比值一定,从而概括出正比例关系的概念.
教学过程
一、复习准备
口答(课件演示:成正比例的量)
1.已知路程和时间,怎样求速度?
2.已知总价和数量,怎样求单价?
3.已知工作总量和工作时间,怎样求工作效率?
二、新授教学
(一)导入新课
这些都是我们已经学过的常见的`数量关系.这节课,我们继续研究这些数量关系中的一些特征.
(二)教学例1.(课件演示:成正比例的量)
1.一列火车1小时行驶90千米,2小时行驶180千米,3小时行驶270千米,4小时行驶360千米,5小时行驶450千米,6小时行驶540千米,7小时行驶630千米,8小时行驶720千米
2.出示下表,并根据上述内容填表.
《正比例》教学设计精品3
教学目标
1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。
2、培养学生概括能力和分析判断能力。
3、培养学生用发展变化的观点来分析问题的能力。
教学重难点
重点:成正比例的量的特征及其断方法。
难点:理解两个变量之间的比例关系,发现思考两种相关联的量之间的变化规律。
教学过程
一、四顾旧知,复习铺垫商店里有两种包装的袜子,一种是5双一包的,售价为25元,一种是8双一包的,售价为32元。哪种袜子更便宜?
学生独立完成后
师提问:你们是怎样比较的?
生:我先求出每种袜子的单价,再进行比较。
师:你是根据哪个数量关系式进行计算的?
生:因为总价=单价×数量,所以单价=总价÷数量。
师:如果单价不变,商品的总价和数量的变化有什么规律呢?这节课,我们就来研究正比例。
(板书:正比例)
二、引导探索,学习新知
1、教学
例1,学习正比例的意义。
(1)结合情境图,观察表中的数据,认识两种相关联的量。
师出示自学提示:表中有哪两种量?总价是怎样随着数量的'变化而变化的?
学生自学并在组内交流。
全班交流。
(2)认识相关联的量。
明确:像这样,一种量变化,另一种量也随着变化,这两种量叫做相关联的量。
2、计算表中的数据,理解正比例的意义。
(1)计算相应的总价与数量的比值,看看有什么规律。
学生计算后:===…=3.5,每一组数据的比值一定。
(2)说一说,每一组数据的比值表示什么?(彩带的单价,也就是彩带的单价是一个固定的数)
(3)请学生用公式把彩带的总价、数量、单价之间的关系表示出来。
(4)明确成正比例的量及正比例关系的意义。
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
如果用字母y和x表示两种相关联的量,用字母k表示它们的比值(一定),正比例关系可以用下面的式子表示:
3、列举并讨论成正比例的量。
(1)生活中还有哪些成正比例的量?
预设:速度一定,路程与时间成正比例;长方形的宽一定,面积和长成正比例。
(2)小结:成正比例的量必须具备哪些条件?哪个条件是关键?两种量中相对应的。两个数的比值一定,这是关键。
4、认识正比例图象。
(课件出示例1的表格及正比例图象)
(1)观察表格和图象,你发现了什么?
(2)把数对(10,35)和(12,42)所在的点描出来,再和上面的图象连起来并延长,你还能发现什么?无论怎样延长,得到的都是直线。
(3)从正比例图象中,你知道了什么?
生1:可以由一个量的值直接找到对应的另一个量的值。
生2:可以直观地看到成正比例的量的变化情况。
(4)利用正比例图象解决问题。
不计算,根据图象判断,如果买9 m彩带,总价是多少?49元能买多少米彩带?小明买的彩带的米数是小丽的2倍,他花的钱是小丽的几倍?
生:因为在单价一定的情况下,数量与总价成正比例关系,小明买的彩带的米数是小丽的2倍,他花的钱也应是小丽的2倍。
设计意图:先从观察图象入手,引导学生直观认识相关联的量,再结合表中的数据,引导学生发现总价与数量的比值一定,使学生理解正比例的意义,最后结合正比例图象,把数据与点联系起来,根据图象,不用计算就能找到一个量的值所对应的另一个量的值,使学生在解决问题的同时,感受数形结合思想。
三、课堂练习:
1、P46“做一做”
2、练习九第1、3~7题
《正比例》教学设计精品4
教材分析:
正比例应用题这部分内容是在教学过比例的意义和性质,成正、反比例的量的基础上进行教学的,这是比和比例知识的综合运用,数学教案-正比例应用题。教材首先说明应用正、反比例的知识可以解决一些实际问题。例1教学应用正比例的意义来解的基本应用题。为了加强知识之间的联系,先让学生用以前学过的方法解答,然后教学用比例的知识解答。通过方框中的说明突出了怎样进行思考的过程,特别强调了新科技要判断题目中两种相关联的量成什么比例关系,以及列出比例式所需的相等关系,即“行驶的路程和时间成正比例关系,所以两次行的路程和时间的比是相等的”然后再设未知数,列出等式(方程)解答,并在解答的基础上引导学生“想一想”,如果改变例1题目里的条件和问题该怎样解答。
教学对象分析:
成正比例的量,在生活实际中应用很广,学生在前两年的学习中,已接触过这种情况的问题,如归一应用题,只不过那时是就题论题,没有上升到一般规律。这里主要使学生学习用比例的知识来解答,在原有认识的基础上,再让学生用其他方法解答同一题目,概括出一般规律。通过解答使学生进一步熟练地判断成正比例的量,从而加深对正比例意义的理解。有利于沟通知识间的联系,也为中学的数学、物理、化学等学科中应用比例知识解决一些问题做较好的准备。同时,由于解答时是根据正比例意义来列等式,又可以巩固和加深对所学的简易方程的认识。所以,在教学上要十分重视从旧知识引申出新知识,在这过程中,蕴涵了抽象概括的方法,运用这个概括对新的实际问题进行判断,这是数学学习所特有的能力。
教学目标:
1、掌握用正比例的方法解答相关应用题;
2、通过解答应用题使学生熟练地判断两种相关联的量是否成正比例,从而加深对正比例意义的理解;
3、培养学生分析问题、解决问题的能力;
4发展学生综合运用知识解决简单实际问题的能力。
教学重点:掌握用正比例的方法解答应用题
教学难点:能正确判断两种相关联的量成什么比例,正确列出比例式。
教学过程:
一、谈话导入:
1、在上新课之前,先考考大家对广州的认识。你知道广州最高的建筑物是什么?它位于何处?
2、对于这座广州最高的建筑物,你还想了解些什么?怎样测量它大概的高度呢?
刚才同学们想出了很多的方法去测量中信广场的大概高度。今天我们学习一种新的方法——正比例应用题,学完后,我们试着用这种方法去计算中信广场的大概高度。看谁学得最棒。
二、新课教学:
先来研究这样一个问题。
1、出示例1
一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?
2、分析解答应用题
(1) 请一位同学读一读题目
(2) 这道题要求什么?已知什么条件?
(3) 能不能用以前学过的方法解答?
(4) 让学生自己解答,边订正边板书:
140÷2×5
=70×5
=350(千米)
答:________________。
3、激励引新
这两种方法都合理,还可以有什么方法解答呢?
学生互议,师引导,我们已经学习了比例的知识,能不能用比例解答呢?
三、探讨新知
1、提出问题
师:请同学们结合课本上的例题,讨论以下问题。
(1) 题目中相关联的两种量是________和________。
(2) ________一定,_________和_________成_______比例关系。
(3) ______行驶的_____ 和 _____的 ________相等。
2、学生自学例题后小组讨论。
3、组间交流:小组代表把讨论结果在班内交流
4、学生尝试解答后(指名学生板演)
5、怎样检验?把检验过程写出来。
6、概括总结
(1) 用比例解答应用题与用算术方法解答应用题教师这道题的解法,如果题目中没有要求的,我们采取任何一种方法都可以,但如果题目要求用比例解的,就一定要用比例的方法解。
(2) 明确解题步骤。(板)
用比例方法解答应用题,具体步骤是怎样的呢?请根据我们所做的例题归纳解题步骤。
1. 分析判断
2. 找出列比例式所需的相等关系
3. 设未知数列等式
4. 求解
5. 检验写答语
四、练习提高
1、基本练习
(1)例题改编
① 如果把这道题的第三个和问题改成:“已知公路长350千米,需要行驶多少小时?”该怎样解答?
② 让学生解答改编后的应用题,集体订正。
③ 小结 :比较一下改编后的题和例1有什么联系和区别?
例1的条件和问题以后,题中成正比例的关系仍没变,解答的方法出没有改变,只是要设需要行驶的小时数为x,列出的等式是: 140/2=350/x
(2)24页做一做:让学生直接用比例知识解答。做完后,请几个同学说一说:你为什么这样列式?
2、变式练习
3、实践运用
(1)数据:刚才我们上课时提到怎教材分析:
正比例应用题这部分内容是在教学过比例的意义和性质,成正、反比例的量的基础上进行教学的,这是比和比例知识的综合运用。教材首先说明应用正、反比例的知识可以解决一些实际问题。例1教学应用正比例的意义来解的基本应用题。为了加强知识之间的联系,先让学生用以前学过的方法解答,然后教学用比例的知识解答。通过方框中的说明突出了怎样进行思考的过程,特别强调了新科技要判断题目中两种相关联的量成什么比例关系,以及列出比例式所需的.相等关系,即“行驶的路程和时间成正比例关系,所以两次行的路程和时间的比是相等的”然后再设未知数,列出等式(方程)解答,并在解答的基础上引导学生“想一想”,如果改变例1题目里的条件和问题该怎样解答。
教学对象分析:
成正比例的量,在生活实际中应用很广,学生在前两年的学习中,已接触过这种情况的问题,如归一应用题,只不过那时是就题论题,没有上升到一般规律。这里主要使学生学习用比例的知识来解答,在原有认识的基础上,再让学生用其他方法解答同一题目,概括出一般规律。通过解答使学生进一步熟练地判断成正比例的量,从而加深对正比例意义的理解。有利于沟通知识间的联系,也为中学的数学、物理、化学等学科中应用比例知识解决一些问题做较好的准备。同时,由于解答时是根据正比例意义来列等式,又可以巩固和加深对所学的简易方程的认识。所以,在教学上要十分重视从旧知识引申出新知识,在这过程中,蕴涵了抽象概括的方法,运用这个概括对新的实际问题进行判断,这是数学学习所特有的能力。
教学目标:
1、掌握用正比例的方法解答相关应用题;
2、通过解答应用题使学生熟练地判断两种相关联的量是否成正比例,从而加深对正比例意义的理解;
3、培养学生分析问题、解决问题的能力;
4发展学生综合运用知识解决简单实际问题的能力。
教学重点:掌握用正比例的方法解答应用题
教学难点:能正确判断两种相关联的量成什么比例,正确列出比例式。
教学过程:
一、谈话导入:
1、在上新课之前,先考考大家对广州的认识。你知道广州最高的建筑物是什么?它位于何处?
2、对于这座广州最高的建筑物,你还想了解些什么?怎样测量它大概的高度呢?
刚才同学们想出了很多的方法去测量中信广场的大概高度。今天我们学习一种新的方法——正比例应用题,学完后,我们试着用这种方法去计算中信广场的大概高度。看谁学得最棒。
二、新课教学:
先来研究这样一个问题。
1、出示例1
一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?
2、分析解答应用题
(1) 请一位同学读一读题目
(2) 这道题要求什么?已知什么条件?
(3) 能不能用以前学过的方法解答?
(4) 让学生自己解答,边订正边板书:
140÷2×5
=70×5
=350(千米)
答:________________。
3、激励引新
这两种方法都合理,还可以有什么方法解答呢?
学生互议,师引导,我们已经学习了比例的知识,能不能用比例解答呢?
三、探讨新知
1、提出问题
师:请同学们结合课本上的例题,讨论以下问题。
(1) 题目中相关联的两种量是________和________。
(2) ________一定,_________和_________成_______比例关系。
(3) ______行驶的_____ 和 _____的 ________相等。
2、学生自学例题后小组讨论。
3、组间交流:小组代表把讨论结果在班内交流
4、学生尝试解答后(指名学生板演)
5、怎样检验?把检验过程写出来。
6、概括总结
(1) 用比例解答应用题与用算术方法解答应用题教师这道题的解法,如果题目中没有要求的,我们采取任何一种方法都可以,但如果题目要求用比例解的,就一定要用比例的方法解。
(2) 明确解题步骤。(板)
用比例方法解答应用题,具体步骤是怎样的呢?请根据我们所做的例题归纳解题步骤。
1. 分析判断
2. 找出列比例式所需的相等关系
3. 设未知数列等式
4. 求解
5. 检验写答语
四、练习提高
1、基本练习
(1)例题改编
① 如果把这道题的第三个和问题改成:“已知公路长350千米,需要行驶多少小时?”该怎样解答?
② 让学生解答改编后的应用题,集体订正。
③ 小结 :比较一下改编后的题和例1有什么联系和区别?
例1的条件和问题以后,题中成正比例的关系仍没变,解答的方法出没有改变,只是要设需要行驶的小时数为x,列出的等式是: 140/2=350/x
(2)24页做一做:让学生直接用比例知识解答。做完后,请几个同学说一说:你为什么这样列式?
2、变式练习
3、实践运用
(1)汇报数据:刚才我们上课时提到怎样测量和计算中信广场的大概高度,课前我请几位同学去测得中信广场的一些数据。现在请这些同学跟我们汇报一下。
(2)能用这些数据编一道正比例应用题吗?
(3)小组合作编题
五、总结
今天我们学习的是如何用正比例的方法解答以前学过的应用题。解答的步骤怎样的呢?
样测量和计算中信广场的大概高度,课前我请几位同学去测得中信广场的一些数据。现在请这些同学跟我们汇报一下。
(2)能用这些数据编一道正比例应用题吗?
(3)小组合作编题。
【《正比例》教学设计】相关文章:
正比例教学设计02-10
《正比例》教学设计优秀06-14
《正比例》 11-23
《正比例》 06-24
正比例 02-24
《正比例》 通用10-08
正比例函数 04-22
《正比例的意义》 07-04
《正比例意义》 03-13
正比例 15篇11-22