《圆柱的体积》教学设计
作为一位无私奉献的人民教师,有必要进行细致的教学设计准备工作,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。那么优秀的教学设计是什么样的呢?下面是小编精心整理的《圆柱的体积》教学设计,欢迎阅读,希望大家能够喜欢。
《圆柱的体积》教学设计1
一、复习。
1、听算。
1π——10π、16π、25π的值。
2、口答(开火车)112——202
二、新授。
(一)圆柱体体积的推导。
1、师:我们学习过哪些立体图形?
生:长方体、正方体。
师:长方体体积怎样求?
生:“长方体体积=长×宽×高”
师随即板书。
师:正方体体积怎样求?
生:“正方体体积=棱长3”
师随即板书。
师:长方体、正方体一个通用的公式是怎样的?
生:长方体或正方体体积=底面积×高。
师随即板书。
师:用字母表示为v=sh
2、师:今天我们来学习和研究“圆柱体的体积”,板书课题。
师:能不能把圆柱体转化成我们学过的长方体或正方体来计算呢?
生:能。
师:怎样转化?
生:
师:大家先想一想,学习计算圆面积时是怎样把圆变成已学过的图形再计算面积的?
生:把圆平均分成许多小扇形,再拼成一个近似的长方形,最后计算出长方形的面积,也就得出了圆的面积。
师:怎样把圆柱体转化成我们学过的图形来计算出它的体积呢?大家讨论讨论。
师:谁能把讨论的情况说一说?
生:把圆柱体从上到下平均分成许多小扇形再切开,然后拼成一个长方体或正方体,最后计算出长方体的体积,也就得到圆柱体的体积。
3、师:谁愿意跟老师合作演示这一过程?
4、师生一起演示教具。并由学生展示。
5、师:同学们看了演示过程回答4个问题:
a、什么变了?什么没变?
生:形状变了,体积没变。
师:b、长方体的底面积与圆柱的底面积有何关系?
生:相等。
师:c、长方体的高与圆柱体的高又有何关系?
生:相等。
师:d、长方体的`体积=底面积×高,那么圆柱体的体积怎样计算?
生:圆柱体的体积=底面积×高。
师:读、背各一次。
师:用字母v柱表示圆柱的体积,s表示底面积,h表示高,它的字母公式为:
v柱=sh,大家读、背、写各一次。
(二)圆柱体体积公式的应用。
1、师:要求圆柱体的体积需要知道哪些条件?
生:需要知道底面积和高。
2、师:请读例4,一根圆柱形钢材,底面积是50cm2,高是21m,它的体积是多少?
师:用手势表示有几个条件,要求几个问题?谁能求出它的体积?
生:2.1m=210cm
50×210=10500(cm)3
师:还可以怎样表示?
生:50×210÷1000=10.5(dm)3
师:还有别的表示法?
生:50×210÷1000000=0.0105(m)3
师:为什么要分别除以1000和1000000?
生:
师:相邻体积单位的进率为1000,面积单位100,长度单位10,并且是低级单位化成高级单位用除法计算,三个结果任选一个即可。全体同学一起说答。
3、师:想一想,如果已知圆柱底面的半径r高h,怎样求圆柱的体积?
生:用r2×π×h等于圆柱的体积。
师:随即板书v柱=πr2h练习一题
已知r=5cm h=10cm求v柱,第一名演板。
师:谁再出一道类似的题,让大家练习?
生:r=10cm, h=5dm,求v柱。
师生一起评点
4、师:如果告诉直径和高怎样求体积呢?
生:用直径÷2得半径,再用半径的平方乘以π乘以高。
师随即板书(d÷2)2πh=v柱
师:请读例5,一个圆柱形水桶,从里面量底面直径是20cm,高是25cm,这个水桶的容积是多少立方分米?
师:用手势表示有几个条件,要求几个问题?
师:怎样求?
生:(20÷2)2×3.14×25
=100×3.14×25
=314×25
=7850(cm)3
=7.85(dm)3
答:它的容积有7.85dm3。
5、师:我们已经会求圆柱体的体积了,现在考考你们,请做p37,1、2,前两名的演板。(学生演板后师生评点)。
三、巩固并拓展
1、师:还有可能告诉哪些条件求圆柱体的体积?
生:还有可能告诉底面周长和高求体积?
师:怎样求?
生:周长÷π=直径,直径÷2=半径,半径的平方乘π乘高。
师随即板书:(c÷π÷2)2πh=v柱
师:谁出题让大家练习?
生:c=12.56cm h=5cm。
师生一起评点:
(12.56÷3.14÷2)2×3.14×5
=12.56×5
=62.8(cm)3
2、师:还有可能告诉哪些条件,求圆柱体的何种?
生:还有可能告诉,周长和侧面积,求体积。
师:怎样求?大家讨论。
生:侧面积÷周长=高,周长÷π÷2=半径
用半径的平方乘π乘h等于体积。
师随即板书:
s侧÷c×(c÷π÷2)2π=v柱。
师:谁能出题大家练习?
生:s侧=12.56cm2,c=12.56cm,求体积。
师生一起评点:
12.56÷12.56×[(12.56÷3.14÷2)2×3.14]
=1×[12.56]
=12.56(cm)3
3、师:还有可能告诉哪些条件求圆柱体的体积?
生:告诉s侧和高,求体积。
师:怎样求?大家讨论。
生:s侧÷高=周长,用周长÷π÷2等于半径,用半径的平方乘π乘高等于体积。
师随即板书:
(s侧÷h÷π÷2)2×3.14×h=v柱
师:谁出题大家练习?
生:s侧=28.26cm2,h=1dm,求体积。
师生一起评点。
(28.26÷10÷3.14÷2)2×3.14×10
=0.452×3.14×10
=20.25×3.14×10
=635.85(cm)3
《圆柱的体积》教学设计2
各位领导、老师、同学们:大家好,今天我讲课的题目是《圆柱的体积》
圆柱的体积是本单元的教学重点。在此之前,学生已经学过了圆面积公式的推导,对转化的思想方法和“等积变形”已有所了解;长方体、正方体的体积公式是本节课的旧知停靠点;而这节课的顺利学习将为以后圆锥体积的学习铺平道路。从能力培养方面来看,本节课的内容有利于发展学生的空间观念,培养学生的逻辑推理能力,在公式推导过程中,还可以培养学生猜想、类推、对应的数学思想和方法。另外,就情感的角度而言,通过学生体验探索数学奥秘的过程,可以培养学生对数学学习的兴趣和探索精神。
由此,预设以下教学目标:
1、使学生经历用切割拼合的.方法借助长方体的体积公式推导出圆柱的体积公式的过程,使学生能总结和理解圆柱的体积公式,能够运用公式正确的计算圆柱的体积。
2、培养学生观察、猜测、分析、比较、综合的学习思考方法。
3、渗透转化、等积变形、极限的数学思想。
4、通过学生体验圆柱体积公式的推导过程,让学生感受探索数学奥秘的乐趣,培养学生学习数学的积极情感;
圆柱的体积公式推导过程可以培养学生多方面的能力,这个过程对学生是否真正理解圆柱体积公式起着至关重要的作用,因此我把圆柱的体积公式推导过程做为本节课的教学重点;而学生的思维是以具体形象思维为主,逐步向抽象逻辑思维过渡,在圆柱体积公式的推导过程中,要用到等积变形、对应、以及逻辑推理的知识,学生理解起来可能会有点困难,所以我认为圆柱的体积公式推导过程也是本节课的教学难点。
本节课要采用的教学方法有:演示法、提问法等,在学习过程中要用到的方法有:观察法、思考法等。
教学用具:圆柱模型,装水的杯子等
这节课主要有五大环节
一、实验引入
师:我们来观察一个现象,把小圆柱放入水里,看看有什么变化
生:变了变了,水面上升了。
师:水面为什么上升
生:小圆柱浸没在水中,将水挤压上升,求小圆柱的体积也就是求上升水面的体积,即圆柱体积。
师:你们想不想知道圆柱体积怎样计算
生齐答:想。
师:今天我们就一起来研究圆柱体积的计算方法。(板书:圆柱的体积)
二、探究新知
师:出示课件,根据课件演示逐步推导出圆柱体的体积计算方法
长方体的体积=底面积×高
| |
圆柱体的体积=底面积×高
v = s h
三、,运用新知,解决问题
出示例1:一根圆柱形钢材,底面积是50平方厘米,高是210厘米,它的体积是多少
师:咱们大家理解自己推导的圆柱体的体积公式了吗下面我们
50×210=10500(cm3)
答:圆柱形钢材体积为10500cm3
四、巩固运用
1,填表:请同学看屏幕回答下面问题,谁想好了谁就站起来说。
底面积(m2) 15 6.4 0.05
高(m) 3 4 2
圆柱体积(m3)
五、总结评价
师:今天我们学习了圆柱体积的推导方法及计算公式。
板书设计:
圆柱的体积
v= s h
例4:一根圆柱形钢材,底面积是50平方厘米,高是210厘米,它的体积是多少
50×210=10500(cm)
答:圆柱形钢材体积为10500立方厘米。
《圆柱的体积》教学设计3
教学目标:
1.结合实际,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。
2.让学生经历观察、猜想、验证等数学活动过程,培养学生探究推理能力,体验数学研究的方法。
3.通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
教学重点:
掌握和运用圆柱体积计算公式。
教学准点:
掌握圆柱体积公式的推导过程。
教学设想:
1.课前互动,我们做一个吹气球的游戏,让学生来对比气球变大后所占用空间的变化。在热烈的气氛中让学生感受物体的体积就是物体所占用空间的大小。
2.教学伊始我创设学具槽做圆柱学具这一睛境,让学生感知圆柱体积的概念,再通过让学生给这4个圆柱学具排序这一问题设疑,让学生明确学习目标。
3.动手实践是学生体验的主要方式,合作交流是学生体验的有效途径。所以在教学中我为图形转化、猜想推理创设有助于学生自主探究的三步曲:第一步:选择转化的方法。第二步:体验转化的过程、第三步:验证转化的结果。引导学生开展观察、操作、猜想、交流、转化的活动,让学生在数学活动中经历数学、体验数学。
4.用字母表示公式已经是学生很熟知的几何知识,因此我为学生提供了与圆柱体积有关的字母,让他们写出相应的公式并在接下来的环节中引导学生发现公式与习题的联系,让他们对号入座。学生根据不同的公式进行计算,给4个圆柱学具排序。这样可以深入理解不同的条件、不同的方法,同样可以得到圆柱的体积,在对比算法中掌握新知。 5.体积和容积这两个概念在五年级已经学过,学生会说意义,但是通过了解,学生并不是真正理解圆柱的体积和容积。所以我在第一次探究中安排了这样的环节,让学生在学习实践中区别圆柱的容积和体积。从形象到抽象建立圆柱的体积概念,符合学生的认知规律。第二次探究则是加入表面积这一刚刚学过的内容,让学生在为3道选择问题的练习中达到区别体积、容积、表面积的目的,从而实现学习运用的最佳状态。 6.最后的思维训练是计算正方体中最大圆柱体的体积,给学生以生动、形象、直观的认识,此题算法多样,富于启发地清晰揭示了知识的内在规律,使它和教学过程有机组合,把学习延伸到实际,让知识在体验中生成。
7.由于每个学生的知识经验、生活情景、思维方式的`不同,对知识的学习也有独特的理解和感受。所以我让他们用今天的知识去解决生活中的问题,并写成数学日记,让他们用自己的方式去体验、探究学习过程。
教学过程:
一、问题导入,质疑问难
师:老师这里有两个气球,(师从兜里掏出两个气球,将其中一个递给学生。)你试试把它们变大。(老师再把两个气球放回兜里。)为什么这个放不回去了?(因为其中一个的体积变大了。)看来它占据了很大的空间。教室中还有哪些物体占据空间?
师:这是一个制作学具的学具槽,想一想,它可以做出什么样的学具来?
生:圆柱学具。
师:是的。仔细观察,你有什么发现?
生:圆柱学具占据了学具槽的空间。
师:这就是圆柱学具的体积。你真善于发现!能用你的话说说,什么是圆柱的体积吗?
生:圆柱的体积就是圆柱所占空间的大小。
师:谁来试着给这4个圆柱学具按体积从大到小排排序?你来试试。
生:体积大小接近,不能确定。
师:老师听懂了,无法判断的原因是不知道圆柱体积的大小,现在我们就来研究圆柱的体积。(师板书。)
二、图形转化。猜想推理
师:想一想,你有办法得到这4个圆柱学具的体积吗?(圆柱课件再从槽中跳出。) 生:用公式计算。 生:用水或沙子转化计算。 师:你们是怎样转化的,具体说说。
生:用橡皮泥转化计算。
生:用圆形纸片叠加计算……
师:嗯,这些方法都很好,就在今天的课堂你会选择哪种方法?
生:因为没有实验学具,所以只能用公式计算。
师:其他的方法可以在课后进行。
师:想用公式计算的同学,你想怎样推导圆柱的体积公式呢?结合你们以往学习几何图形的经验,举例说明。
生:大部分图形公式的推导都是把新学的转化为学过的。例如:圆形可以转化为长方形。
师:联系旧知识,采用转化法,确实不错。 师:那现在它是一个圆柱,你想怎么办?
生:像刚才一样进行平均分。
师:你能具体说说吗?
生:沿着圆柱的底面直径平均切分成16个小扇形。
师:都说实践出真知,接下来就请同学们拿出学具,动手尝试着进行转化,并说说转化后的结果。
生:将圆柱沿底面直径平均分成16个小扇形,切分之后,可以拼成一个近似的长方体。
师:(刚才我们将圆柱沿底面直径平均分成16个小扇形,拼成一个近似的长方体。)如果想让它更近似于长方体,你想分成多少份?(32)更近似一点。(64)你呢?(128)……
师:这是同学们刚才的转化过程。
师:打开书,自由读,用直线标记,找出关键词,依照关键词自由读读转化的过程。
师:现在再请一名同学到前面来演示转化过程,其他同学注意观察,圆柱转化为长方体后什么变了,什么没变7(圆柱转化为长方体时形状变了,但是它们底面积、高和体积都没变。)
总结文字公式:长方体体积=底面积×高
圆柱体体积=底面积×高
师:恭喜大家,我们已经成功地推导出圆柱的体积公式。(掌声鼓励一下)老师这有一些字母:d、s、r、c、h、v、π。它们与圆柱体体积的计算公式息息相关,请你们用字母表示出圆柱的体积公式。
生:v=sh v=(d/2)2π×hv=π2×h v=(c÷π/2)2π×h
师:对比这四个公式你又有什么新发现?(彩色粉笔画线。)
生:相同之处都是底面积乘以高,不同是底面积求法不同。
师:谢谢你精彩的发现,你叫什么名字,认识一下,老师会记住你的。
三、运用公式,解决问题
师:现在我们已经知道了圆柱的体积公式,快来解决刚才的实际问题吧!这是我们要由大到小排序的4个圆柱学具,请你们拿出题卡计算出它们的体积并排序。
1号底面积50平方厘米,高2.1分米:
2号直径是10厘米,高20厘米;
3号半径是4厘米,高22厘米;
4号底面周长31.4厘米,高18厘米。
师:汇报一下你的计算和排序结果,并说说你应用了哪个公式?
师:与他答案相同的同学举手示意一下,你是怎样做的?现在你清楚了吗?
师:看来,灵活运用公式,并选择合理的算法。会使我们的学习更高效。
四、巧用公式,多重探究
师:同学们到现在为止,你都学到了哪些关于圆柱的知识?
生:表面积、体积、容积。
师:老师这里有一组习题。请你们选择合适的问题。
师:读完之后,你认为求什么就可以大声地说出来。
(生:体积、容积、表面积。)
学具厂有一个制作学具的圆柱形铁皮桶。它的底面直径是22厘米,高是25厘米,_________?从里面量底面直径是20厘米,高是25厘米______________9底面积是380平方厘米。侧面积是1727平方厘米_________________?
师:说说你选择问题的根据是什么?
生:体积是圆柱所占空间的大小。容积是圆柱能容纳物体的大小,表面积是圆柱所有面积的总和。
五、开放训练,拓展提升
师:学习很愉快,我们来庆祝一下:在一个棱长为a分米正方体盒中,放一个最大的圆柱体蛋糕,系上b分米长的丝带,(打结部分忽略不计)挖去1根直径为c厘米,高是d厘米的圆柱蜡烛空隙,这个蛋糕体积到底是多少呢?这次我们男女生比赛,列式不计算,看谁解法多并说明解题思路。
《圆柱的体积》教学设计4
教学目标:
1.知识与技能:运用迁移规律,引导学生借助圆面积计算公式的推导方法来推导圆柱的体积计算公式,会用圆柱的体积公式计算圆柱形物体的体积。
2.方法与过程:经历猜测、验证、合作、动手操作等过程,体验和理解圆柱体体积公式的推导过程。
3.情感、态度、价值观:创设情境,激发学生学习的积极性。让学生在主动学习的基础上,逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力和培养学生抽象、概括的思维能力。
教学重点和难点:
圆柱体积公式推导过程;正确理解圆柱体积公式推导过程。
教 具:
圆柱的体积公式演示教具
教学过程:
一、复习(1)、请大家想一想,我们在学习圆的面积时,是怎样把圆变成已学过的图形再计算面积的?
(2)、我们都学过那些立体图形的体积公式。
二、积极参与 探究感受
1、猜测圆柱的体积和那些条件有关。
2、.探究推导圆柱的体积计算公式。 小组合作讨论:
(1)将圆柱体切割拼成我们学过的什么立体图形?
(2)切拼前后的两个物体什么变了?什么没变?
(3)切拼前后的两个物体有什么联系?
课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份……),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。
①把圆柱拼成长方体后,形状变了,体积不变。(板书:长方体的体积=圆柱的体积)
②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)
③圆柱的体积=底面积×高
字母公式是V=Sh(板书公式)
2、练一练:一根圆柱形木料,底面积为75平方厘米,长90厘米,它的体积是多少?
3、要用这个公式计算圆柱的体积必须知道什么条件?
三、练习 1、填空
(1)、圆柱体通过切拼转化成近似的 ()
体。这个长方体的底面积等于圆柱体的()
这个长方体的`高等于圆柱体()
因为长方体的体积等于()
,所以,圆柱体的体积等于()
用字母表示()。
(2)、底面积是 10平方米,高是2米,体积是( )。
(3)、底面半径是2分米,高是5分米,体积是( )。 2讨论:
(1)已知圆柱底面的半径和高,怎样求圆柱的体积 V= 兀r2 × h (2)已知圆柱底面的直径和高,怎样求圆柱的体积 V=兀(d÷2)2×h
(3)已知圆柱底面的周长和高,怎样求圆柱的体积 V=兀(C÷兀÷2) ×h
3、练习:已知半径和高求体积,已知直径和高求体积。
四、小结或质疑 五、作业
板书设计:
圆柱的体积
长方体的体积=底面积x高 圆柱的体积=底面积x高
V=Sh
《圆柱的体积》教学设计5
评价样题:
学习流程:
一、创设现实情境,增强探究欲望。
1、出示橡皮泥做的圆柱体:怎样求出这个圆柱体橡皮泥的体积?你能想出几种办法?
如果要求(出示百家姓广场上的圆柱形大鼎底座图片)圆柱形大鼎底座的体积,还能用刚才那样的方法吗?那怎么办?(学生试说出自己的办法。)
看起来前面这些方法虽然可行,但有一定的局限性,我们必须找到一个解决任意圆柱体积的方法才行,对吗?今天,就让我们来共同研究解决任意圆柱体积的方法。(板书课题:圆柱的体积)
二、亲历建构过程,提高探索能力。
1、提出问题,大胆猜想
你能猜一猜圆柱的体积怎样计算吗?你觉得圆柱体积的大小和什么有关?
(鼓励学生大胆猜测,说出自己的想法)
2、回顾旧知,帮助迁移
同学们都很会大胆猜想,但还要小心地论证猜想的科学性。你还记得圆面积转化什么图形的面积来求它的公式的吗?
(演示课件:圆转化成长方形)
3、引发思考:我们能否把圆柱体也转化成学过的立体图形来计算它的体积呢?如果能,猜一猜能转化成哪种立体图形?
4、小组合作,验证猜想
下面请大家四人一组,借助手中的学具或用萝卜和土豆做成的圆柱分组进行探讨。
(出示合作提纲)小组长做好分工,并完成记录表。
活动记录表
思考:
1、圆柱体可以转化成哪种立体图形?
2、两种立体图形之间有怎样的联系?你们发现了什么?得出了什么结论?
3、怎样用简捷的形式表示你推导出来的公式呢?
活动过程:
1、我们用方法,把圆柱体转化成了体。
2、在这个转化的过程中,变了,没有变。
3、通过观察比较,我们发现:把一个圆柱体的底面分成许多相等的扇形,然后切、拼,就能得到一个近似的长方体。这个长方体的底面积等于圆柱体的(),高就是圆柱体的()。因为,长方体体积=(),所以,圆柱体的体积计算公式是v=()。
5、全班交流,展示评价。
评价交流中,借助评价样题。同时课件演示切拼的过程,同时演示将圆柱底面等分成32份、64份……,让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。 6、根据学生的`发现引导学生推导出:
圆柱的体积=底面积×高,
用字母表示v = sh。
7、反馈练习。
(1)要求圆柱体积,必须知道哪些条件?
(2)出示例5,学生借助圆柱体积公式自主完成,并及时订正反馈。
圆柱的体积教学设计 相关内容:用转化的策略解决分数问题“长方体和正方体的表面积”的教学实录小学数学《倒数的认识》教案北师大版6年级数学第11册第1单元《圆的认识》教案1、分数四则混合运算《按比例分配》课后反思百分数的意义和读写法反思百分数(三)用百分数解决问题查看更多>>小学六年级数学教案
《圆柱的体积》教学设计6
一、教学目标
(一)知识与技能
用已学的圆柱体积知识解决生活中的实际问题,并渗透转化思想。
(二)过程与方法
经历探究不规则物体体积的转化、测量和计算过程,让学生在动手操作中初步建立“转化”的数学思想,体验“等积变形”的转化过程。
(三)情感态度和价值观
通过实践,让学生在合作中建立协作精神,并增强学生“用数学”的意识。
二、教学重难点
教学重点:利用所学知识合理灵活地分析、解决不规则物体的体积的计算方法。
教学难点:转化前后的沟通。
三、教学准备
每组一个矿泉水瓶(课前统一搜集农夫山泉矿泉水瓶,装有适量清水,水高度分别为6、7、8、9厘米),直尺。
四、教学过程
(一)复习旧知,做好铺垫
1.板书:圆柱的体积。
问:圆柱的体积怎么计算?体积和容积有什么区别?
2.揭题:这节课,我们要根据这些体积和容积的知识来解决生活中的实际问题。(完整板书:用圆柱的体积解决问题。)
【设计意图】通过复习圆柱的体积计算方法以及体积和容积之间的联系和区别,为学习新知做好知识上的准备。
(二)探索实践,体验转化过程
1.创设情境,提出问题。
每个小组桌子上有一个没有装满水的矿泉水瓶。
教师:原本这是一瓶装满水的矿泉水,已经喝了一部分,你能根据它来提一个数学问题吗?(随机板书)
预设1:瓶子还有多少水?(剩下多少水?)
预设2:喝了多少水?(也就是瓶子的空气部分。)
预设3:这个瓶子一共能装多少水?(也就是这个瓶子的容积是多少?)
2.你觉得你能轻松解决什么问题?
(1)预设1:瓶子有多少水?(怎么解决?)
学生:瓶子里剩下的水呈圆柱状,只要量出这个圆柱的底面直径和高就能算出它的体积。
教师:需要用到什么工具?(直尺)你想利用直尺得到哪些数据?(底面直径、水的高度)
小结:知道了底面直径和水的高度,要解决这个问题的确轻而易举。请你准备好直尺,或许等会儿有用哦!
(2)预设2:喝了多少水?
学生:喝掉部分的形状是不规则,没有办法计算。
教师:当物体形状不规则时,我们想求出它的体积可以怎么办?
教师相机引导:能否将空气部分变成一个规则的立体图形呢?
学生能说出方法更好,不能说出则引导:我们不妨把瓶子倒过来看看,你发现了什么?
引导学生发现:在瓶子倒置前后,水的体积不变,空气的体积不变,因此,喝了多少水=倒置后空气部分的体积,倒置后空气部分是一个圆柱,要求出它的体积需要哪些数据?(倒置后空气的高度)
小结:这个方法不错,我们利用水的流动性成功地将不规则的空气部分转化成了一个圆柱体,得到所需数据后能求出它的体积。这样一来,第3个问题还难得到你吗?
(3)怎么求这个矿泉水瓶的容积?引导学生得出:倒置前水的体积+倒置后空气的体积=瓶子容积。
【设计意图】课本中的例题呈现如下,
例题是直接呈现转化方法的,我是想先屏蔽相关数据信息和方法,通过激发学生解决问题的内在需求,根据自己的生活学习经验来想办法解决,才有了对数学情境的改编,以期通过转化、观察、对比,让学生发现倒置前后两部分立体图形之间的相同点,沟通两部分体积之间的内在联系,顺利地把新知转化为旧知,分散了难点,从而找到解决问题的方法。
3.小组合作,测量计算。
(矿泉水瓶内直径为6cm)
教师:方法找到了,接下来能否正确求出瓶子的容积就看你们的了!
(1)课件出示:
一个内直径是( )的瓶子里,水的高度是( ),把瓶盖拧紧倒置放平,无水部分是圆柱形,高度是( )。这个瓶子的容积是多少?(测量时取整厘米数)
(2)四人小组合作:
A.组长安排好分工:
要量出所需数据,其他组员要监督好测量方法与结果是否正确,要按要求把题目填完整。
B.组内互相说一说:倒置前后哪两部分的体积不变?
矿泉水瓶的容积=( )+( )。
C.做好以上准备工作后,利用所得数据独立计算,再组内校对结果是否正确。
【设计意图】这一环节让学生大胆动手操作,在实践中不断发现解决问题,在同伴的交流中拓展自己的思维,让学生在合作中建立协作精神。
4.交流反馈。
教师巡查,选择矿泉水瓶中原有水高度分别6、7、8、9厘米的同学板演。
瓶中水高度为6厘米的:
3.14×(6÷2)2×6+3.14×(6÷2)2×13
=3.14×9×(6+13)
≈537(毫升)。
瓶中水高度为7厘米的:
3.14×(6÷2)2×7+3.14×(6÷2)2×12
=3.14×9×(7+12)
≈537(毫升)。
瓶中水高度为8厘米的:
3.14×(6÷2)2×8+3.14×(6÷2)2×11
=3.14×9×(8+11)
≈537(毫升)。
瓶中水高度为9厘米的:
3.14×(6÷2)2×9+3.14×(6÷2)2×10
=3.14×9×(9+10)
≈537(毫升)。
教师:出示某品牌矿泉水瓶的标签,上面写着净含量为550毫升,基本符合。
5.解答正确吗?
教师引导学生回顾反思:刚才我们是怎样解决问题的?
小结:根据具体情况选择合适的转化方法,像这样不规则立体图形的体积可以转化为规则的立体图形来计算。
【设计意图】通过回顾解决问题的过程,帮助学生把本环节的数学活动经验进行总结,引导学生在后续的学习中碰到相似的问题也可同样利用转化的思想来解决。
(三)练习巩固,学以致用
1.数学书P27做一做。
(1)学生独立思考,解决问题。
(2)把自己的`想法与同桌说一说。
(3)交流反馈:重点交流如何转化,倒置后哪两部分体积不变?
求小明喝了多少水实际上是求矿泉水瓶上面无水部分的体积,这部分为不规则的立体图形。
将水瓶倒置后不规则容器转化成了圆柱:该圆柱体积=小明喝了的水。
3.14×(6÷2)2×10=282.6(毫升)。
2.输液100毫升,每分钟输2.5毫升,请观察第12分钟时吊瓶图像中的数据。问整个吊瓶的容积是多少毫升?
(1)请学生计算,并反馈订正。
(2)反馈要点:
整个吊瓶容积=图像中空气部分的容积+还剩下液体的体积。
根据图象,可以得出在第12分钟吊瓶有80毫升是空的。
剩下液体的体积=100-2.5×12=70(毫升)。
即整个吊瓶容积=80+70=150(毫升)。
【设计意图】从生活中常见的吊瓶问题引出,感受数学与生活的密切联系,能根据图像提取解决问题的有效信息 ,既提升了所学知识,又关注了学生的思考,培养学生的分析、解决问题能力。
3.如下图,一个底面周长为9.42厘米的圆柱体,从中间斜着截去一段后,它的体积是多少?
(1)思考:这是一个不规则的立体图形,要求它的体积,它不能像瓶子里的水一样可以流动变形转化,怎么办?
(2)讨论方法:
A.重叠:假设把两个大小一样的斜截体拼成一个底面周长为9.42厘米,高为(4+6)厘米的圆柱,这个立体图形的体积是新圆柱体积的一半。
B.切割:把这个立体图形分为两部分,下面是一个底面周长为9.42厘米,高为4厘米的圆柱体,上面是一个高为(6-4)厘米的圆柱斜截体,且体积是高为(6-4)厘米的圆柱体积的一半。
(3)用自己认可的方法计算,并进行反馈。
解法一:3.14×(9.42÷3.14÷2)2×10÷2=35.325(立方厘米)。
解法二: 3.14×(9.42÷3.14÷2)2×4+3.14×(9.42÷3.14÷2)2×2÷2=35.325(立方厘米)。
(4)反馈小结:可以有不同的转化方法来解决问题。
【设计意图】不满足于一种方法的转化,展示多种方法,开拓学生的思维。
(四)全课总结,提升认识
教师:回忆一下,今天这节课有什么收获?
教师和学生共同小结:求不规则的立体图形的体积可以将它转化成为规则的立体图形,这节课我们主要是将不规则的立体图形转化成为圆柱,用圆柱的体积计算方法来解决问题。
在解决问题时,主要要弄清楚转化前后两部分之间的关系。
【设计意图】通过小结,让学生自主地对回顾本课所学知识进行梳理总结,通过归纳与提炼,让学生明确转化思想在数学学习中的重要性。
《圆柱的体积》教学设计7
一、教学内容
教材第25页 例5、例6
二、学习目标
1、知识目标:理解、掌握圆柱的体积公式的推导过程,能利用圆柱的体积计算公式解决问题。
2、能力目标:经历圆柱的体积公式的推导过程,学会运用转化的思想解决一些具体问题。
3、情感目标:感受圆柱的体积的计算与生活密不可分,激发学生学习数学的热情。
三、教学重难点
1、重点:理解、掌握圆柱的体积公式的推导过程。
2、难点:圆柱体积公式的推导过程。
四、教学准备
多媒体课件
五、教学过程
<一>创设情境、生成问题
师:前面我们学过长方体和正方体的体积计算方法,你还记得是怎么计算的吗?(课件出示一个长方体和一个正方体)
生答:长方体的体积用长X宽X高,正方体的体积是用棱长X棱长X棱长,或者用一个公用的底面积X高来计算
师:这位同学回答的非常好,今天这节课我们就一起来研究圆柱体的体积计算方法。
板书:圆柱的体积(课件)
<二>探索交流、解决问题
1、猜想
师:长方体和正方体体积的大小取决于三条棱的长度,或者说取决于底面积和高,那么你认为圆柱的体积取决于什么呢?
(生自由猜想,并讨论交流)师适当板书记录
刚才那几个同学都很有想法,觉得圆柱的体积的大小可能和XXXX有关系,有人这样说过,伟大的猜想必须要经过验证才能得到证明,否则的话只能是空想,接下来通过两组图片大家进行验证一下
(课件出示两组图片,第一组两个圆柱等底不等高,第二组两个圆柱等高不等底)
师:第一组图片中的两个圆柱有什么特征?
生:底面一样,但是高度却不一样,体积也不一样
师:第二组图片中的两个圆柱有什么特征?
生:这组图片中的两个圆柱高度一样,但是底面却不一样,体积也不一样
师:那么通过刚才两个同学的回答,你能得出什么结论呢?
小结:圆柱的'体积的大小取决于圆柱底面的大小和高度的大小
师:那么你能大胆的猜想一下圆柱的体积是如何计算的吗?
生猜想......
师:我们的猜想对不对,还是要用实验去证明
2、推导圆柱体积计算公式
师:怎么样进行实验呢?结合我们以往学习几何图形的经验,小组讨论交流,说说自己的想法
生:我们是把圆柱的底面分成若干偶数分,然后用刀割开,在进行拼组,变成一个长方体,这样通过转化,圆柱就变成了一个近似的长方体,分的份数越多,越接近一个长方体,然后通过求长方体的体积去求圆柱的体积
师:用心思考的同学总能找到解决问题的办法,那么接下来同学们就利用手里的学习用具完成这个验证实验并完成老师给你们的实践作业纸
(课件出示作业纸)对应和公式推导
选取小组的作业纸进行展示,有其他同学进行评定
课件演示结果
小结:通过转化的数学思想我们将圆柱的体积转化成已经学过的长方体的体积,圆柱的体积计算公式是底面积乘高。
另外,圆柱的底面积、直径、半径和周长四个数据中的任意一个和圆柱的高两个数据就可以求出圆柱的体积。
<三>巩固应用、内化提高
2、
3、下面这个杯子能不能装下这袋奶?(杯子的数据是从里面测量得到的)
8cm
8cm
498ml
498ml
10cm
10cm
<四>回顾整理、反思提升
今天这节课你有什么新的收获说出来和大家一起分享吧!
《圆柱的体积》教学设计8
一、教学内容:
人教版六年级数学下册圆柱的体积
二、教学目的:
1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。
2、初步学会用转化的数学思想和方法,解决实际问题的能力
3、渗透转化思想,培养学生的自主探索意识。
三、教学重难点:
难点:掌握圆柱体积的计算公式。
难点:圆柱体积的计算公式的推导。
四、教具准备:
多媒体课件
教学过程:
一、复习回顾
1、物体所占( )叫做物体的体积
1、长方体的体积=()×()×()=( )×()
3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式S=πr2。
(设计意图:激发学习兴趣,加强新旧知识的联系,理解数学转化的思想方法。)
二、探究新知
1、圆柱体积计算公式的推导。
(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形,由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的`立体图形就越接近于长方体了)
(2)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。(长方体的体积=底面积×高,所以圆柱的体积=底面积×高,V=sh)
(设计意图:通过实验观察、培养学生的观察能力、分析能力、归纳能力,体会数学转化的思想方法,运用转化的方法学习新知识,培养学生的学习技能。)
(3)公式拓展 V=sh=πr2
2、例题初探
(1)初探例题:一根圆柱形钢材,底面积是40平方厘米,高是25厘米。它的体积是多少立方分米?
(2)阅读与理解:
①这道题已知什么?求什么?
②怎样计算?
③结果单位怎么样?
(3)学生解答、点评
(设计意图:加强学生的审题训练,对基本公式的运用,加强基础知识的练习习题, 检查学生运用公式的能力以及单位的换算。)
三、学以致用
李家庄挖了一口圆柱形水井,地面以下的井深10m, 底面直径为1m.挖出的土有多少立方米?
(设计意图:加强学生的审题训练,对公式的灵活运用,提升学生的解题能力,加强数学与生活的联系。)
四、课堂小结
同学们,我们学习了圆柱的体积计算,你有什么收获呢?让我们课后解决一些有关圆柱体积计算的实际问题。
(设计意图:发挥学生的想象,提高学生的整理能力,激发学生课后的探究欲望,从而提高学生的数学水平。)
板书设计:
圆柱的体积
长方体的体积=底面积×高
圆柱的体积=底面积×高
V=sh=πr2
《圆柱的体积》教学设计9
学习目标
1.使学生理解和掌握圆柱的体积计算公式,并能根据题里的条件正确地求出圆柱的体积。
2.培养学生初步的空间观念和思维能力;让学生认识“转化”的思考方法。
学习重点理解和掌握圆柱的体积计算公式
学习难点圆柱体积计算公式的推导。
一、温故知新
1、什么是体积?()2.长方体的体积=()字母公式:
或长方体的体积=()字母公式:
3、圆的面积=()字母公式:
4.圆是把圆面积转化成近似的长方形面积进行计算的。圆的面积是怎样推倒得来的?
圆分割成若干等分,拼成近似的长方形,它的长等于圆的(),长方形的等于圆的(),长方形的面积等于(),所以圆的面积等于()。
二、自主学习
1.计算圆的面积时,是把圆面积转化成我们学过的长方形进行计算的,能不能把圆柱转化成我们学过的立体图形来计算它的体积?
2、把圆柱的底面分成许多相等的.扇形(16等分),然后把圆柱沿高切开,可能会拼成怎样的图形?()
3、思考:1)通过实验你发现了什么?
*拼成的近似长方体()没变,()变了。
*拼成的近似长方体和圆柱相比,底面形状变了,由圆变成了近似(),( )的大小没有改变。
*近似长方形的高就是圆柱的( ).
2)推导圆柱体积公式。怎样计算圆柱的体积?
长方体的体积可以用底面积乘高来计算,而在推导过程中,长方体的底面积就是圆柱的(),高就是圆柱的(),所以圆柱的体积也可以用()乘()来计算。
用字母表示:()
4补充例题:一根圆柱形钢材,底面积是50平方厘米,高是2.1米。它的体积是多少?
①已知()求()
②能不能根据公式直接计算?()因为()
③计算之前要注意什么?
计算时既要分析题目中的(),还要注意先统一()。
④解出此题,代公式计算。
3、完成第20页的“做一做”。
4、思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?______________
5、自学p20例6,6、比较一下补充例题与例6有哪些相同的地方和不同的地方?
7、做书上21页1题。
《圆柱的体积》教学设计10
【教学目标】
1、探索圆柱体积的计算方法,利用数学思想,体验数学研究的方法。
2、让学生掌握圆柱体积的计算方法,运用体积公式解决简单的实际问题。
3、通过把圆柱体转化成近似的长方体,提高学生解决问题的能力,感受获得成功的喜悦。
【教学重点】掌握和运用圆柱体积的计算公式。
【教学难点】圆柱体积公式的推导过程。
【教学方法】直观教学法,先用教具让学生观察比较,再让学生动手操作。在实践操作过程中理解掌握圆柱体积的计算方法。
【教学过程】
一、情景导入,复习旧知。
1、什么是圆柱的体积?
①出示情境图。修一面墙,用哪一种砖,所要的块数较少?为什么?
②什么叫做物体的体积?
③长方体的正方体的体积计算公式是什么:从公式中可以看出,要计算长方体和正方体的体积必须得到哪些明确的数据?
④推测:圆柱的体积可能与它的什么有关?
2、导入新课。
这节课我们就一起来探索圆柱体积的计算方法。板书课题:“圆柱的体积”
二、探索新知
1、比较大小,探究圆柱的体积与哪些因素有关。(让学生先试着说说)
(1)图1:比较等高不等底的三个圆柱的体积。(学生通过观察发现等高时底面积越大圆柱的`体积也就越大)
(2)图2:比较等底不等高的五个圆柱的体积。(学生通过观察发现等底时高越大圆柱的体积也就越大。)
(3)圆柱的体积计算公式可能是什么样的?V=Sh 2、大胆猜想,求证体积公式。
(1)引导学生回忆长方体、正方体的体积计算方法。
(2)设疑:圆柱的体积又该怎么样计算呢?根据以前学过的知识你可以做出怎样的假设?
(3)学生小组讨论交流。
(4)各小组参加全班交流汇报。(把圆柱底面分成许多相等的小扇形,把圆柱切开,就可以拼成一个近似的长方体,长方体的体积是底面积乘高,圆柱的体积也可能就是底面积乘高来计算的。)
3、演示转化过程,推导公式。
(1)老师操作转化过程。先分一个四或八等分的再分手上的这个十六等分的。
(2)学生带问题操作转化过程。
a:拼成的长方体的底面积等于圆柱的什么?
b:拼成的长方体的高又是圆柱的什么?(长方体的底面积等于圆柱体的底面积,高等于圆柱体的高。)
师生共同完成推导过程。
长方体的体积=底面积×高 圆柱的体积=底面积×高 v = s h 圆柱的体积计算公式就是:v=sh
(4)如果知道圆柱的底面半径r和高h,圆柱的体积公式又可以怎样来写呢?v=πr2h
(5)教材第25页“做一做”第1、2题。(第2题先让学生说说解题步骤,再齐练)
4、教学例6。
(1)出示例6。读题,说说从题中获得的信息。
(2)引导学生思考:解决这个问题就是要计算什么?
老师:求杯子的容积就是求这个杯子可容纳物体的体积,计算方法跟圆柱体积的计算方法相同。
(3)学生独立解决问题。
(4)组织交流反馈。
交流时,引导学生交流自己的解题步骤,着重说明杯子内部的底面积没有直接给出,因此先要求底面积,再求杯子的容积。
三、 巩固应用
1、完成教材第26页“做一做”第一题。
(1)要判断这杯水够不够喝,需要知道什么?你打算分哪几步计算?尝试完成。
(2)要求这个问题,需要先求什么?再求什么?独立完成。
2、完成教材第28页练习五第2题。
(1)尝试完成。
(2)说说解题思路。
3、完成教材第28页练习五第3题。
(1)尝试完成。
(2)说说解题思路。
四、课堂小节
今天这节课,我们一起探究了圆柱体积的计算方法。在探究的过程中,我们经历了猜测、实验、证明的思维过程。圆柱体积的计算方法和长方体、正方体相同,都可以用“底面积×高”来求。
五、课堂作业
教材练习五第4、5题。
板书设计:
圆柱的体积 长方体的体积=底面积×高 圆柱的体积 =底面积×高 V= s h 圆柱的体积计算公式是v=sh=πr2h
《圆柱的体积》教学设计11
教学目标
知识与能力
1.运用迁移规律,引导学生借助圆面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。
2.会用圆柱的体积计算圆柱形物体的体积和容积,运用公式解决一些简单的问题。
3.引导学生逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力
4.借助实物演示,培养学生抽象、概括的思维能力。
过程与方法
1.通过观察、实验、讨论,学生理解所学知识。
2.通过新旧知识的转化贯通,学生对所学知识形成体系,领悟数学思想迁移的重要性。
3.在讲解例题与巩固练习中,学生掌握基本的解题方法。
情感、态度与价值观
1.使学生感觉到数学就在身边,激发其学习数学的兴趣。
2.通过实验操作及设问,培养其创造性思维和大胆的猜想。
教学重点
圆柱体体积的计算
教学难点
圆柱体体积的公式推导方法
教学突破
本节的内容是这单元的重点的内容,且与实际生活有着密切关系。在教学上对于圆柱体积的计算,首先应从圆的面积推导人手,可以借助一些教具演示及鼓励学生实验操作来明确。
教 具
圆柱的体积公式演示教具,多媒体课件
教学过程
一、情景引入
1、出示圆柱形水杯。
(1)老师在杯子里面装满水,想一想,水杯里的水是什么形状的?(2)你能用以前学过的方法计算出这些水的体积吗?
(3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。(4)说一说长方体体积的计算公式。
(5)在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?
2,复习相关知识,为新课教学作铺垫。
(1)什么叫物体的体积?我们学过什么立体图形的体积计算?(学生自由回答)
(2)出示圆柱体物品,指名学生指出各部分名称。
二、新课教学
设疑揭题:
我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。。
1.探究推导圆柱的体积计算公式。
课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成16份、32份……),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。依次解决上面三个问题:
① 把圆柱拼成长方体后,形状变了,体积不变。(板书:长方体的体积=圆柱的体积)
② 拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)
③ 圆柱的体积=底面积×高 字母公式是V=Sh(板书公式)
讨论并得出结果。你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的长方体。这个长方体的底面积与圆柱体的底面积 ,这个长方体的高与圆柱体的高 。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是: 。(板书:圆柱的体积=底面积×高)用字母表示: 。(板书:V=Sh)(设计意图:要用这个公式计算圆柱的'体积必须知道什么条件?
填表:请同学看屏幕回答下面问题,
④ 底面积(㎡)高(m)圆柱体积(m3)
4 3
5 6
9 2
(设计意图:设计练习能使学生达到举一反三的效果,从而训练学生的技能。这是第一层基本练习,通过这道题可以使学生更好的掌握本课重点,)
例:一个圆柱形油桶,底面内直径是6分米,高是7分米.它的容积约是多少立方分米?(得数保留整立方分米)
解: d=6dm,h=7dm.r=3dm
S底 =πr2=3.14×32 =3.14×9 =28.26(dm2)
V =S底h =28.26×7 =197.82198dm3 答:油桶的容积约是198立方分
(设计意图:使学生注意解题格式,注意体积的单位为三次方)
三、巩固反馈
1.求下面圆柱体的体积。(单位:厘米)
同学板演,其余同学在作业本上做。板演的同学讲解自己的解题方法题。
⑤ ,教师归纳学生所用的解题方法,强调在解题的过程中格式。(设计意图:这是第二层变式练习。是让学生在掌握公式的基础上理解公式,学会灵活运用公式的训练题。通过对公式的拓展性理解,可以进一步加深学生对圆柱体积公式的理解和掌握,同时也能培养学生的逻辑思维能力。)
练习:(回到想一想中) 圆柱形水杯的底面直径是10cm,高是15cm.已知水杯中水的体积是整个水杯体积的 2/3 计算水杯中水的体积?
四、拓展练习
1.一个长方形的纸片长是6分米,宽4分米.用它分别围成两个圆柱体,A是用4分米做底高6分米,B是用6分米做底高是4分米它们的体积大小一样吗?请你计算说明理由.(结果保留π)
2.一个底面直径是20cm的圆柱形容体里,放进一个不规则的铸铁零件后,容体里的水面升高4cm,求这铸铁零件的体积是多少?、
五、课堂小结
1.谈谈这节课你有哪些收获。
2.解题时需要注意那些方面。
六、布置作业
1.课后练习1,2题
2.拓展练习2题
板书设计
圆柱的体积
长方体的体积=底面积x高
圆柱——长方体 圆柱的体积=底面积x高
V=sh
《圆柱的体积》教学设计12
一、课前系统部分
(一)、课标分析
《圆柱的体积》是冀教版六年级数学下册的内容,在课程标准中属于第二阶段(四-六年级)中第二个版块图形与几何中的教学内容,对《圆柱的体积》教学内容的要求是:结合具体情境,探索并掌握圆柱的体积的计算方法,并能解决简单的实际问题。
(二)、教材分析
《圆柱的体积》是冀教版六年级数学下册的内容,在学生初步认识了圆柱体的基础上,进一步研究圆柱体的特征,让学生比较深入地研究立体几何图形,是学生发展空间观念的又一次飞跃。圆柱体是基本的立体几何图形,通过学习,可以培养学生形成初步的空间观念,为下一步学习“圆锥的体积”打下基础。
(三)、学生分析
六年级的学生已经有了较丰富的生活经验,这些感性经验是他们进一步学习的基础,本节课的学习过程正是让学生的感性经验上升到理性经验的过程,符合学生的年龄特征和认知规律,在这一过程中,能使学生体会到认识事物和归纳事物特征的方法,学会运用数学的思维方式去认识世界。
(四)、教学目标
知识与能力:通过推导圆柱体积公式的过程,向学生渗透转化思想,建立空间观念,培养学生判断、推理的能力和迁移能力。
过程与方法:结合具体情境和实践活动,理解圆柱体积的含义。探索并掌握圆柱体积的计算方法,能正确计算圆柱的`体积,并会解决一些简单的实际问题。
情感态度与价值观:感悟数学知识的内在联系,增强学生应用数学的意识,激发学生的学习兴趣。
(五)、教学重难点:
1、教学重点:掌握圆柱体积的计算公式。
2、教学难点:圆柱体积计算公式的推导。
(六)、教学策略
介绍进行课堂教学所要采取的方法与技巧。实践探索、小组合作交流、演绎推理。
(七)、教学用具:电脑课件、圆柱体积演示器、正圆柱体。
二、课堂系统部分——教学过程
(一)、创设情境,引起猜想:
1、激发兴趣:圆柱体转化成近似长方体。
课件展示:一个长方体的钢锭通过锻造形成一个与长方体高相等的圆柱体模具。)师:通过观察,同学们发现这两个物体都有什么是相同的?
生:体积、高。
(设计意图说明:引导学生对所学知识的迁移,初步感知圆柱的体积计算与长方体的体积计算有关。)
师:揭示课题:圆柱的体积。
(二)、推导圆柱体积计算公式
师:怎样用我们已有的知识来计算圆柱的体积?生:长方体的体积可以通过底面积乘高得到,我想圆柱的体积是不是也可以通过底面积乘高得到呢?
师课件展示:沿着圆柱底面扇形把圆柱切开,得到大小相等的16块,拼成了一个近似长方体的演示过程。
我们把这相等的16块分成32块,64块,或更多,,那么拼成的立体图形就
学生回答:就越接近于长方体了。
师课件展示:点击后出现:将圆柱细分,拼成一个更接近于长方体的演示过程。)
师:通过观察,你知道了什么?
生可能回答:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。
师课件展示:点击后出现:长方体的底面积等于圆柱的底面积,再点击出现:圆柱的体积=底面积×215;高,V=Sh。
(三)、练一练:
1、师课件出示:一根圆柱形木料,底面积为75平方厘米,长90厘米。它的体积是多少?
生:完成后小组内交流。
2、师课件出示:判断题
一根圆柱形钢材,底面积是50平方厘米,高是米。它的体积是多少?
师:出示下面几种解答方案,让学生判断哪些是正确的。 ①50×=105(立方厘米)
②米=210厘米,50×210=(立方厘米)③ 50平方厘米=平方米,×=(立方米)④ 50平方厘米=平方米,×=(立方米)
生:小组讨论,学生汇报并说出理由。
师:点击出现:“√” 。
师小结:计算时既要分析条件和问题,还要注意要先统一计量单位。
(四)、两个圆柱体积计算公式的比较。
师课件展示:点击出现圆柱,再点击出现半径r、高h如果已知圆柱底面半径r和高h,这样的圆柱的体积应该怎样计算呢?师课件展示:点击出现V=πrh。师课件展示:点击出现V=Sh。
师:说说这两个体积计算公式之间有什么联系呢?生可能回答:这两个体积计算公式中πr就是底面积S(设计意图说明:比较两个圆柱体积计算公式,明确两个体积公式之间的关系。)
小结:题目给了圆的半径,我们先算出圆柱的底面积,再算它的体积,如果题目给的是圆的直径呢?
生可能回答:我们仍然先算出圆柱的底面积,再算它的体积。
(五)、拓展训练练习一:填表
师课件展示,生小组交流完成。练习二:计算圆柱的体积师课件展示,生小组交流完成。
练习三:师课件展示:根据圆柱的体积公式计算一个圆柱的体积是80cm3,底面积是16cm3。它的高是多少cm?
生小组交流完成。
(六)、小结
通过今天的学习,我们懂得,可以把圆柱转化为一个近似的长方体来计算它的体积。知道了圆柱的体积可以用V=Sh或者V=πrh来计算。
(七)、板书设计圆柱的体积
圆柱的体积=底面积×高=Sh=πrh
三、课后系统部分——教学后记
圆柱的体积是几何知识的综合运用,它是在学生了解了圆柱的特征、掌握了长方体和正方体体积以及圆的面积计算公式推导过程的基础上进行教学的。由于圆柱是一种含有曲面的几何体,这给体积的认识和计算增加了难度。为了降低学习难度,让学生更好地理解和掌握圆柱体积的计算方法,为后面学习圆锥体积打下坚实的基础,因此在本节课的教学设计上十分注重从已知知识和方法入手,让学生经历“转化图形、建立联系、推导公式”的探究过程,通过一系列的数学活动,培养学生探究数学知识的能力和方法,同时在学习活动中体验学习的乐趣。
《圆柱的体积》教学设计13
教学目标:
1.结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。
2.让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。
3.通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
教学重点:让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。
教学难点:让学生经历观察、实验、猜想、证明等数学活动过程掌握圆柱体积的计算方法。
教学方法:操作法、推理法、讲授法
教学过程:
一、复习引新。
我们以前学过哪些立体图形?
生答:长方体和正方体。
它们的体积是怎么求的?
长方体:长×宽×高,正方体:棱长×棱长×棱长。
二、教学例4。
1、出示长方体和正方体。
它们的底面积相等,高也相等。长方体和正方体的体积相等吗?为什么?
生答:体积=底面积×高,所以长方体和正方体的体积相等。
2、出示圆柱。
猜一猜,圆柱的体积与长方体和正方体的体积相等吗?
生猜测:相等。
究竟如何,今天我们就一起来研究圆柱的体积。
板书课题:圆柱的体积。
问:刚才只是你们的猜测,你准备怎么验证?依据是什么?(4人小组讨论)
生:准备把圆柱转化成我们以前学过的立体图形,来求它的体积。
依据是圆可以转化成长方形计算面积。
3、出示课件。
回顾圆的面积计算公式是怎样推导的。
4、回顾了圆的面积公式推导,你有什么启发?
生答:把圆柱转化成长方体计算体积。
5、动手操作。
请2位同学上台用教具来演示,边演示边讲解。
把圆柱的底面平均分成16份,切开后把它拼成一个近似地长方体。
多请几组同学上台讲解,完善语言。
提问:为什么用“近似”这个词?
6、教师演示课件。
把圆柱拼成了一个近似的长方体。
7、如果把圆柱的底面平均分成32份、64份……切开后拼成的物体会有什么变化?
生答:拼成的物体越来越接近长方体。
追问:为什么?
生答:平均分的份数越多,每份就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体。
8、刚才我们通过动手操作,把圆柱切拼成一个近似的长方体。
师:拼成的长方体和原来的圆柱有什么联系?请与同学们进行交流?
出示讨论题。
1、拼成的长方体的底面积与原来圆柱的底面积有什么关系?为什么是相等的?
2、拼成的长方体的高与原来圆柱的高有什么关系?为什么是相等的?
3、拼成的长方体的体积与原来圆柱的.体积有什么关系?为什么?
板书:
长方体体积=底面积×高
圆柱体积=底面积×高
9、根据上面的实验和讨论,想一想,可以怎样求圆柱的体积?
生答:把圆柱切拼成一个近似的长方体,拼成的长方体的底面积等于圆柱的底面积,拼成长方体的高等于圆柱的高,因为长方体体积=底面积×高,所以圆柱体积=底面积×高。
10、用字母如何表示。
11、出示例4。
现在你知道圆柱的体积与长方体、正方体的体积相等了吗?
为什么?
生答:体积相等,都是用底面积×高。
V=sh
三、巩固练习。
1、出示练习七第一题。
学生直接把答案填写在表中。
提问:你是根据什么填写的?
2、练一练。
这两题,你打算怎么计算?
生答:不知道底面积,要先算出底面积,再乘高。
3.14×2×5 = 62.8(平方厘米)
3.14×(6÷2)×8 = 226.08(平方厘米)
3、一个圆柱形状的粮囤,从里面量得底面周长是12.56米,高是2米。它的容积是多少立方米?
问:这道题和前面做的有什么不同?怎么计算?
生答:这是求容积的。所以数据是从里面量的。
4、练习七第2题。
观察下面的3个杯子,你能看出哪个杯子的饮料多?
请学生猜一猜。
请学生列出三道算式。
(1)3.14×(8÷2)×4
(2)3.14×(6÷2)×7
(3)3.14×(5÷2)×10
问:你能不求出结果直接比较出大小吗?
生答:第一个杯子的饮料多。
5、练习七第三题。
学生独立解答。
指名说说是怎样算的?
3.14×3×5×1= 141.3(千克)
141.3千克<150千克
答:这个保温茶桶不能盛150千克水。
四、总结。
今天这节课你学到了什么?
《圆柱的体积》教学设计14
教学目标
1、理解圆柱体体积公式的推导过程,掌握计算公式。
2、会运用公式计算圆柱的体积。
教学重点
圆柱体体积的计算。
教学难点
理解圆柱体体积公式的推导过程。
教学过程
一、复习准备
(一)教师提问
1、什么叫体积?怎样求长方体的体积?
2、圆的面积公式是什么?
3、圆的面积公式是怎样推导的?
(二)谈话导入
同学们,我们在研究圆面积公式的推导时,是把它转化成我们学过的长方形知识的来解决的。那圆柱的体积怎样计算呢?能不能也把它转化成我们学过的立体图形来计算呢?这节课我们就来研究这个问题。(板书:圆柱的体积)
二、新授教学
(一)教学圆柱体的体积公式。(演示动画“圆柱体的体积1”)
1、教师演示
把圆柱的底面分成了16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积大小相等,底面是扇形的形体。
2、学生利用学具操作。
3、启发学生思考、讨论:
(1)圆柱体切开后可以拼成一个什么形体?(近似的长方体)
(2)通过刚才的实验你发现了什么?
①拼成的近似的长方体和圆柱体相比,体积大小没变,形状变了。
②拼成的近似的长方体和圆柱体相比,底面的形状变了,由圆变成了近似的长方形,而底面的面积大小没有发生变化。
③近似长方体的高就是圆柱的高,没有变化。
4、学生根据圆的面积公式推导过程,进行猜想。
(1)如果把圆柱的底面平均分成32份,拼成的长方体形状怎样?
(2)如果把圆柱的底面平均分成64份,拼成的长方体形状怎样?
(3)如果把圆柱的底面平均分成128份,拼成的长方体形状怎样?
5、启发学生说出通过以上的观察,发现了什么?
(1)平均分的份数越多,拼起来的形体越近似于长方体。
(2)平均分的'份数越多,每份扇形的底面就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体。
6、推导圆柱的体积公式
(1)学生分组讨论:圆柱体的体积怎样计算?
(2)学生汇报讨论结果,并说明理由。
因为长方体的体积等于底面积乘高。(板书:长方体的体积=底面积×高)近似长方体的体积等于圆柱的体积,(板书:圆柱的体积),近似长方体的底面积等于圆柱的底面积,(板书:底面积)近似长方体的高等于圆柱的高,(板书:高)所以圆柱的体积等于底面积乘高。(板书:圆柱的体积=底面积×高)
(3)用字母表示圆柱的体积公式。(板书:V=Sh)
(二)教学例4。
1。出示例4
例4。一根圆柱形钢材,底面积是50平方厘米,高是2.1米,它的体积是多少?
2.1米=210厘米
50×210=10500(立方厘米)
答:它的体积是10500立方厘米。
2。反馈练习
(1)一根圆柱形木料,底面积是75平方厘米,长90厘米,它的体积是多少?
(2)一个圆柱形罐头盒的内底面半径是5厘米,高15厘米,它的容积是多少?
(三)教学例5。
1、出示例5
例5、一个圆柱形水桶,从里面量底面直径是20厘米,高是25厘米,这个水桶的容积是多少立方分米?
水桶的底面积:
=3.14×
=3.14×100
=314(平方厘米)
水桶的容积:
314×25
=7850(立方厘米)
=7.8(立方分米)
答:这个水桶的容积大约是7.8立方分米。
三、课堂小结
通过本节课的学习,你有什么收获?
1、圆柱体体积公式的推导方法。
2、公式的应用。
四、课堂练习
(一)填表
底面积S(平方米)
高h(米)
圆柱的体积V(立方米)
15
3
6.4
4
《圆柱的体积》教学设计15
一、创设情景、感知圆柱体积的概念。
教师拿出一个装了半杯水的烧杯,拿出一个圆柱形的物体,准备投入烧杯中。
师:同学们想一想会发生什么情况?(教师将圆柱形的物体投入水中。)请仔细观察后,说一说你有什么发现?
生:水面上升一些。圆柱形的物体挤掉了原来水占有的空间。
师:我们通常把这个空间叫体积。
生:我发现上升的水的体积和圆柱的体积是相等的。
师:同学们发现得都很精彩,谁来说一说什么叫圆柱的体积。
生:圆柱所占空间的大小就叫圆柱的体积。
二、比较大小、创设求圆柱体积的情景。
教师又拿出一个圆柱。(底面略小而高长一些,体积相差不多)
师:这两个圆柱的体积,哪个比较大一些?
生:第一个比较大,因为它高一些。
生:第二个比较大,因为它粗一些。
生:他们都是猜的。第一个圆柱它虽然高一些,但底面积小一些;第二个圆柱虽然底面大一些,它是的高少了一些。无法准确地比较它们的大小。
师:有什么办法能比较它们的大小呢?(小组讨论)
生:准备半杯水,将第一具圆柱浸没水中,作好标志,再把第二个圆柱浸没水中,作个标志,哪个水面上升的高一些,哪个圆柱的体积就比较大。
生:要学会计算圆柱的体积后就好解决了。
三、大胆猜想,感知圆柱体积公式。
师:你觉得圆柱体积的大小和什么有关?
生:和圆柱的高有关,一个圆柱它的高增加,它的体积也会变大些。
生:和圆柱的底面大小有关,一个圆柱它的底面增加,它的体积也会变大些。
师:很好!大胆地推想一下圆柱的体积应如何计算?(小组讨论)
生:我猜想用圆柱的底面积乘以它的高就可以求出体积。
师:你同意他的猜想吗?说说你的理由。
三、小心求证,论证圆柱体积公式。
师:同学们都很会大胆猜想,但还要小心地论证猜想的科学性。
教师拿出一具圆柱体体积教具,把它藏在衣服里,只露出一具底面。
师:你看到了什么?
生:圆形。
师:你还记得圆面积转化什么图形的面积来求它的公式的吗?
生:把圆的面积转化成长方形的面积。
教师把整个圆柱拿出来,问:怎么求这个圆柱的体积呢?(小组讨论)
生:可以把这个圆柱转化成我们已经会求的长方体的体积来求体积。
师:说说你们小组是如何转化的。
生上台操作展示。生:我们把圆柱平均分成16分,可以拼成一个近似的长方体,这个长方体的高就是圆柱的高,这个长方体的底面积和圆柱的底面积相等。所以,圆柱的体积可以用底面积乘高来求。
师:你同意吗?照这样做一遍,然后说一说如何求圆柱的体积。
最后学生自主得出圆柱的体积公式。
【片段分析】
本节课的设计过程是:"创设情景----发现问题----提出问题----猜想假设----实践操作----解决问题",这一教学过程,充分体现了以学生为主体的.教学思想,教师充分地相信尊重学生,鼓励其积极主动地探究问题,让学生体验解决问题的过程,体验解决问题的成功。
1、注重了课程资源的开发。由于学生生活背景和思考角度的不同,所使用的方法必然是多样化的,教师应尊重每位学生个性化的想法,并认真倾听。本节课中多处合理地开发了学生的课程资源:一是在感知体积的概念时,教师通过做圆柱放入水的实验,实实在在地让学生用生活经验感知体积的存在;二是在猜想体积公式时,学生一般的经验是如果一个圆柱高(底面)不变,底面(高)越大体积越大,学生自然地就会利用自己的经验想到圆柱的体积的大小与底面和高有密切的联系;三是在体积公式猜想时。猜想方法的多样化就体现了问题解决策略的多样化。有的学生联系实践生活联想,把圆柱看作是有很多个相等的圆叠加起来的;有的学生联系旧知识来推想,因为长文体和正方体的体积公式都是底面积乘高。学生是学生真正的主人,只有调动学生的学习积极性和平时的各种知识积累,这种知识的积累可以是以前学过的知识和方法,也可以生活中的经验或经历,这些都是课程资源,教师只有充分利用了这些课程资源,学生的学习活动才有可能真正成为有意义的过程。
2、注重数学思想方法和学习能力的培养。能力的发展决不等同于知识与技能的获得。能力的形成是一个缓慢的过程,有其自身的特点和规律,它不是学生“懂”了,也不是学生“会”了,而是学生自己“悟”出了道理、规律和思考方法等。本节课沿着“猜想-验证”的学习流程进行,给学生提供较充分的探索交流的空间,组织、引导学生“经历观察、实验、猜想、证明等数学活动过程”,并把数学推理能力有机地融合在这样的“过程”之中,有力地促使了学习改善学习方式。本课中学生“以旧推新”-大胆地进行数学的猜想;“以新转旧”-积极把新知识转化为已能解决的旧问题;“新旧交融”-合理地把新知识纳入到原有的认识结构中,教学活动成了学生自己建构数学知识的活动。
整个教学过程是在“猜想-验证”的过程中进行的,是让学生在和已有知识经验中体验和理解数学,学生学会了思考、学会了解决问题的策略,学出自信。
【《圆柱的体积》教学设计】相关文章:
《圆柱的体积》教学设计06-27
圆柱体积教学设计05-31
圆柱的体积华体会可以注销账号不 06-13
《圆柱的体积》华体会可以注销账号不 05-20
[优选]《圆柱的体积》华体会可以注销账号不 07-08
[实用]圆柱的体积华体会可以注销账号不 05-16
圆柱的体积华体会可以注销账号不 (优)07-09