《组合图形的面积》教学设计
作为一名教学工作者,往往需要进行教学设计编写工作,借助教学设计可以更好地组织教学活动。那么优秀的教学设计是什么样的呢?下面是小编为大家收集的《组合图形的面积》教学设计,希望能够帮助到大家。
《组合图形的面积》教学设计1
一、教材分析:
这是小学数学人教版第九册第五单元的内容。学生已经学习了平行四边形、三角形、梯形的面积,在此基础上学习组合图形,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,提高学生综合能力。本节课重点探索组合图形面积的方法。教材安排的内容除了巩固学生所学的知识外,更注重将解决问题的思考策略渗透其中。通过学生亲手的“拼”、“剪”,将组合图形进行分解,计算出组合图形面积,从而掌握这类题的思考及解题方法。
二、学情分析:
根据学生已有的生活经验,对组合图形的认识并不很难。学生已经系统的学过平行四边形、三角形、梯形的面积计算方法,对转化思想也有所渗透。对于方法的.借鉴、交流、思考、创新都需要教师的引导和点拨。
三、教学目标
1、掌握组合图形面积计算的方法并正确计算。
2、能根据各种组合图形的条件有效地选择计算方法并进行正确的解答。
3、能运用所学的知识,初步解决生活中组合图形的实际问题。
四、教学重点和难点
1、掌握组合图形面积的计算方法。
2、理解计算组合图形面积的多种方法,让学生学会这类题目的思考方法。
3、学会运用“分割”与“添补“的方法计算组合图形的面积。
五、教学过程
(一)、谜语激趣,以旧引新
(课前)将一些教学用具的纸片发给学生
1、谈话导入,课件出示谜语。(①草地上来了一群羊。打一水果名称 ②又来了一群狼。 打一水果名称)
(1)思考:谜语的谜底是什么?(①草莓 ②杨(羊)莓(没))设计意图:抓住教学内容的特点,运用知识的正迁移。给学生以启示,调动学生的学习兴趣。
(2)提问:你们觉得哪个谜语好猜?为什么?(第二个,因为第二个问题有了第一个问题做基础,所以容易些。)
(3)学生回答后教师出示答案,从而导出新课,并板书课题。
设计意图:用猜谜语的形式让学生来明事理,从而导出新课。
2、课件出示各种学过的基本图形。(如长方形、正方形、平行四边形、梯形、三角形)
(1)同桌交流、讨论。(小动)
(2)代表回答。
(3)复习平面图形面积公式。
设计意图:巩固所学几种平面图形的面积公式及计算方法。
(二)、自主探究新知
1、小组合作,交流探讨。
(1)教师要求:拿出课前准备的图片从中任意选择两个图形,拼成一个新的图形。边做边思考,你拼的图形像什么,是由哪个基本图形拼成的,小组讨论这个图形的面积是怎样计算的。
(2)2人小组讨论并计算出图形的面积。(小动)
设计意图:以学生为主,让学生进行分工、讨论,通过集体的力量来计算这个图形的面积。
2、自主合作,探索方法。
课件出示例题:小华家买了新房,计划在客厅铺地板,请你估计他家至少需要买多少瓷砖铺地板,再实际算一算,并与同学交流。(有图例)
(1)让学生拿出课前准备的图片中组合图形的学具,与小组合作,先估一估,再通过自己喜欢的方法,计算出这个图形的面积。(学生合作讨论,教师巡视并作简单的提示和指导。(大动)
(2)学生动手剪一剪,拼一拼(沿虚线剪下,将组合图形分割成一个大长方形和小长方形或两个梯形或补一个小正方形等多种割补法。)计算图形的面积。
(3)根据学生的解法,教师进行分析、点评。
设计意图:让学生亲手参与学习,通过拼剪与讨论,明白能将组合图形进行多种分割或割补后再计算其面积。
(三)、联系实际,巩固拓展
1、课件出示课本中多种组合图形,学生辨别图形是由哪些平面图形组成的。
2、学生独立完成,代表发表自己的解题方法。
3、根据学生回答,教师点评:通过分解图形的面积相加或补成所学的平面图形再通过面积相减,都可以计算出组合图形的面积。
设计意图:让学生根据图形关系,推算出图中的隐藏条件,让学生明确解组合图形的面积方法不是唯一的。
(四)、回顾全课,小结
1、学生小结 2、教师总结 3、布置作业。
设计意图:让学生自己小结,教师再总结,即培养了学生的概括能力,又能将本堂课的内容进行了总结。最后布置作业来巩固本节课所学的内容。
六、板书设计
组合图形的面积
组合图形分割、添补 基本图形
《组合图形的面积》教学设计2
教学目标:
1、巩固平行四边形、三角形、梯形、圆的面积公式及推导过程。 2、弄清各图形面积之间的联系,熟练掌握面积公式。 3、灵活运用割补法、拼全法解决组合图形的面积计算问题。 4、在知识的运用与迁移中让学生感受到数学的乐趣。 教学方法:
探究式学习、闯关式练习
教学准备:
各种平面图形和组合图形卡片
教学过程:
一、课前交流
师生互问候并提出本课时教学期望及要求——智勇闯三关。
二、热身活动
1、出示各种平面图形,请同学说说用字母表示的面积公式。
2、说说平行四边形、三角形的面积推导过程。
(渗透各图形的面积计算过程中切割法和移补法运用的数学思想)
三、第一关
1、出示图形
A B
2、解析题目
A图:割补成一个长方形和一个圆。(长方形面积加上圆的面积)
B图;切割成一个正方形和半个圆。(正方形的面积加上半个圆的面积) 3、出示数据,学生任选一题进行计算。 4、做好的自行上台演板,再全班交流、评析。
5、小结闯关情况,体验闯关成功的喜悦,激发闯关斗志。
四、第二关
1、出示图形(求阴影部分的面积)
A B
2、解析题目
A图:割补成一个梯形和一个三角形(梯形面积减去三角形面积) B图:移补成一个长方形。(长和宽都要减去空白处的宽度)
3、出示数据(A图梯形上底20㎝,下底40㎝),学生任选一题进行计算。
4、做好的自行上台演板,再全班交流、评析。
5、小结闯关情况及闯关成功诀窍,体验闯关成功的喜悦同时充分准备应对下一关的挑战。
五、第三关
1、出示图形,引导学生展开空间想象,刚才两关都是利用割补法把组合图形切割、移补成我们学过的平面图形再进行面积计算,那这两颗星形图又是从怎样的图形中割取下来的呢? A B
2、解析题目,并出示下图。
A图用三角形的面积减去半个圆的面积。 B图用正方形的面积减去一个圆的面积。
3、出示数据(A图三角形的底是20㎝,高是17㎝;B图正方形的边长是40dm),学生任选一题进行计算。
4、指名叫刚才想象出的同学上台演板,再全班交流、评析。
5、小结闯关情况,体验闯关成功的喜悦,鼓励学生大胆想象,学会运用所学知识解决数学问题。
六、全课总结
全班归纳闯关心得,并以此激发学生的`学习数学的热情及优化学生的数学思想。
反思:
因为我运用了学生喜闻乐见的闯关形式开展本节练习课,故而课堂气氛活跃,学生学习积极性高。为了让全体学生都参与其中且体验到成功的喜悦之情,我设计了由易到难的三关,让学生运用所学知识经历一个推进、巩固、深化的过程。而且都是全班先交流解题思路,再任选一题进行计算,如此时间上也易掌控,又照顾到了那些学困生。整堂课下来,统计后发现有四分之三以上的同学闯过了三关。
《组合图形的面积》教学设计3
学习目标:
1.知识目标:通过动手操作使学生理解组合图形的含义,理解并掌握组合图形的多种计算方法,并正确地计算组合图形的面积。
2.能力目标:通过学生自主探索,合作交流,激发学生的积极性和主动性。从而归纳组合图形面积的方法。
3.情感目标:在探索,实践活动中使学生获得成功的体验,感受数学知识的广泛应用。渗透转化的数学思想和方法。
教学重点:能根据条件求组合图形的面积。
教学难点:理解分解图形时简单图形的差。
教具准备:图形卡片
教学过程:
一、联系学生生活,引入新课。
数学教学,要紧密联系学生的生活实际。新课开始之前,我由猜图形引出:
1.实物投影:同学们,你们说说这些图形像什么?
师:今天老师先和大家玩一个猜图形的小游戏。出示图形:猜猜它们像什么?
师:很简单,很容易吧!但是在这个简单的游戏中却蕴含着丰富的数学知识。今天就让我们一起去探索、去研究。
2.出示基本图形,从而复习已学过的基本知识。
师:在这两个拼成的图形中,有哪些是你认识的图形?梯形是哪里来的?还有一个学过的图形这里没有出现,它是什么呢?(贴出图形:正方形、长方形、三角形、梯形、平行四边形)
二、教学新课。
学生亲身体验和感知易于获得感性经验,提高实际操作能力。而观察、操作、讨论等都是数学活动中最常用的方法。因此,在教学过程中我尽量给学生创设更多的动手操作机会,提供丰富的材料,使他们可以亲自进行最广泛意义的实验、操作及通过观察结果、提出问题、讨论并自己寻找答案。
教学新课时,我首先让学生说一说、拼一拼、分一分。根据学生前面猜的结果,提出:自己用这些基本图形拼出自己喜欢的图案?
1.在拼图活动中认识组合图形。
师:同学们,不要小看了这五个基本平面图形,它能把我们带到神奇的图形世界,请你们也拼出一个你喜欢的图形。(独立完成)
师:同学们刚才拼出了各式各样的图形,那么,谁能来介绍一下,你拼出的图形像什么?用到了哪些学过的基本图形?
生:利用实物投影展示自己的作品。
师:同学们说得真好,那么请你们看一看老师和你们所拼的各种不同图形,它们有没有共同的特点呢?(生自由发言)
师:虽然拼出的图形它们的形状不同,但都是由几个简单的图形拼出来的,所以我们把这些图形叫作组合图形。(板书:组合图形)
师:大家做得真不错,都可以成为小设计师了。那你们能不能从组合图形中发现基本图形呢?出示两个图形。
师:说说这里面有你认识的图形吗?你是怎样看出来的?
师:大家说得都不错,那你能不能做一做 ?(在题纸上做一做)
师:学生展示交流结果。
(选择虚线最合适,和图形中的实线加以区分。帮助我们解决组合图形面积的计算的这条虚线我们就叫它辅助线。)
师:刚才大家的学习都很积极努力,接下来要继续加油呀!
2.生:找到了组合图形和基本图形之间的`关系,同时也理解了什么是组合图形。这时候,学生的积极性比较高,充分看出了让学生参与教学活动的教学效果。但是,在小组活动时,有的学生可能没有充分发挥自己的才能。
我看到学生比较积极,立刻抓住这个机会,对他们说:“你们想不想知道这些组合图形的面积呢?”孩子们齐声说道:“想!”于是我就利用课件出示了书中的例题,于是就分小组寻找解决组合图形面积的方法。
3.在探索活动中寻找计算方法。出示例题:
师:小华家买了新房子,计划在客厅铺地板,请大家看一看,出示图形。
师:现在请你估计一下,客厅的面积有多大?
师:这个图形实际上就是一个什么图形?
师:要想做到不浪费,不少买,我们应该怎么办呢?(板书:面积)
师:那么你想怎样求这个图形的面积呢?
学生立即四人一组开始活动,情绪高涨,主动学了起来。有的组找到了不同的方法。但有的组人数较多,没有参与到其中,浪费了时间,这是我在教学中需要改进的地方。
小组活动:请同学们利用自己手上的题纸,分一分,算一算。
师:谁能来代表你们组说说是怎样计算这个图形的面积呢?那么为什么要把它分成两个长方形或其他图形呢?(学生逐步介绍了自己探索中采用的分割方法)
学生很喜欢在课堂上留给他们自己学习的空间这样的学习方式。接着就是让孩子们展示自己的研究结果,并且说出自己的想法。根据学生所说发给他们小贴画,学生非常高兴。根据他们自主学习的过程,问道:“你发现了什么?”从而,总结出不同的最基本的求组合图形的方法。
师:根据不同的方法,请学生给这些方法分一分类。
师:板书:分割法和添补法。
师:在这些方法中,第几种解题方法计算起来比较快?为什么?(实物投影展示几种方法)
师:说说你喜欢那种方法?为什么?
师:虽然我们采用了不同的方法解决了这个问题,但是结果都是一样的,因此,在解题过程中要多角度思考问题,寻求多种方法解决问题。
利用比较,深化认识。让学生对照板书或者手中的不同方法,让学生想:你会选择哪种方法,为什么?从中选择最优的方法。
让学生在生活中找一找组合图形,因为组合在实际生活中应用比较广泛。我觉得学生有一种对知识的渴求,也喜欢在生活找到所学的知识。
三、习题设计:
1.出示图形进行练习
试一试:一张硬纸板剪下4个边长是4厘米的小正方形后,可以做成一个没有盖子的盒子。
(1)这张硬纸板还剩下多大的面积?
(2)有一面墙,粉刷这面墙每平方米需用0.15千克涂料,一共要用多少千克涂料?
(3)选择你喜欢的组合图形,计算出它的面积(生活中你所见到的组合图形)。
四、小结。
师:说说你今天最大的收获。关于组合图形的面积的计算,你还有什么不懂或需要提醒大家注意的地方?
把学到的知识应用到生活中去,解决生活中的问题,这才是根本目的。于是我出示了学校粉刷墙这道题以及自己选择身边的组合图形来算一算的这个问题,让今天的知识紧密地联系了学生的生活实际,这时要求学生独立完成,培养学生解决问题的能力。
《组合图形的面积》教学设计4
教学内容:教科书p92~93页。
教学目标:
1. 使学生结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算出面积。
2. 综合运用平面图形面积计算的知识,进一步发展学生的空间观念。
3. 培养学生认真观察、独立思考、合作交流的能力和创新意识。
教学重点:掌握计算组合图形面积的方法。
教学难点:如何把组合图形变成已学过的平面图形来计算面积。
教具准备:课件、可拼组的几个简单平面图形。
教学过程:
一. 激趣导入
1.逐一出示学过的平面图形,说出它的名称及面积计算公式。随后将图形张贴在黑板上,组成几幅美丽的图案。
2.观察这些图形,它们与以前学过的平面图形有什么不同?
小结:这些图形都是由几个简单的平面图形组成的,我们把这样的图形叫做组合图形。(板书:组合图形)
3.说一说生活中那些地方有组合图形?它们都是由哪些图形组成的?(学生自由说)
4.认识了组合图形,那么大家还想了解有关组合图形的哪些知识呢?(周长、面积……)这节课我们重点学习组合图形的面积。(板书:面积)
二. 探究新知
1.由图1引出例1.
(课件出示)右图表示的是一间房子侧面墙的形状,它的面积是多少平方米?
(1) 认真观察图形,先独立思考,然后把自己的想法和同桌说说。
(2) 汇报交流。(结合课件演示)
① 把组合图形分成一个三角形和一个正方形。
算式:5×5+5×2÷2
② 把组合图形分成两个完全一样的梯形。
算式:(5+5+2)×(5÷2)÷2×2
(3)你认为两种方法哪种比较简便?
师:在计算组合图形的面积时有多种方法,同学们要认真观察、多动脑筋,选择自己喜欢而又简便的方法进行计算。
(4) 通过学习,你认为可以怎样计算组合图形的面积?
学生自由发言,形成初步认识:可以把组合图形分割成几个简单的'平面图形,分别求出它们的面积再相加。(板书:分割法)
(5) 任意选择黑板上的一个组合图形说计算方法。
2.出示例2. (课件)做一面这样的中队旗要用多少红布呢?(先不出现数字)
(1)小组讨论。
(2)汇报交流。
①分成两个梯形。
②分成一个正方形和两个三角形。
③用长方形面积减一个三角形面积。
④分成一个梯形和一个三角形。
……
(3)提供数据,并选择你喜欢的方法进行计算。
(4)比较评价。
(5)你对计算组合图形的面积有了什么新认识?
小结:根据不同的组合图形,除了用分割法求面积外,还可以先把组合图形添补完整,求出总面积再减去添补上的面积,或用割补法求面积。(板书:添补法、割补法)
三.巩固拓展
谈话引出校园建设新规划。
1.前往综合大楼。求下面指示牌的面积。
2.这是准备新建综合大楼的一块空地,你能帮学校算算这块地的面积有多大吗?你能想出几种算法?
3.小小设计师:
学校想在综合大楼前建一个漂亮的多边形大花坛,种上红、黄、蓝、三种颜色的花,请你设计一种方案,用上学过的图形,并求出三种花的种植面积。
四.总结全课
这节课你有什么收获?你觉得最开心的是什么?
《组合图形的面积》教学设计5
教学内容:
北师大版五年级数学上册第五单元图形的面积(二);75~76页:组合图形面积
教学目标:
1、知识目标:
①、明确组合图形是由几个简单图形组合而成,求组合图形的面积就是求几个简单图形的面积的和或差的计算
②、在自主探索的活动中,理解组合图形面积的计算方法。
③、能根据各种组合图形的条件,有效的选择适当的计算方法并能正确解答。
2、能力目标:
①、通过实践操作、练习,提高观察、分析能力和解题的灵活性;能正确地分析图形。
②、通过图形的组合和分解培养分析问题、解决问题的能力以及学会把复杂问题转化为简单问题的策略意识。
3、情感与价值观目标:
①、通过动手拼图体会组合图形的美,并能展示自我,张扬个性。
②、让孩子体验到成功的喜悦,培养了学生战胜困难的决心和勇气,团结友爱的美好情感。
教学重点:理解什么是组合图形,能运用“分割法、添补法或割补法”将组合图形转化成已学过的图形,计算组合图形的面积。
教学难点:选择合适有效的计算方法解决实际问题。
教具准备:课件、图片等。
教学过程:
一、拼图游戏
1、请同学们任意选两个图形拼出你喜欢的物体。
2、请你说说你用哪些图形拼成什么?(2~3人)
3、请几位同学说说这些基本图形的面积。
【设计意图:利用同学们喜欢的游戏,激发同学们的学习兴趣,创造轻松愉快的课堂氛围,增强求知欲。用猜谜语的形式让学生来明事理,从而导出新课。】
二、观察图形,明确定义
1、课件出示生活中的组合图形。
(1)观察这些图形有什么共同特点呢?引出组合图形的定义。(2)想一想:生活中哪些地方还有组合图形?
窗户、飞机模型……
2、师总结,揭示课题。
这些精美的图案是由两个或两个以上的简单图形组合而成的叫组合图形。今天,我们一起来探索组合图形面积的计算(板书课题)。
【设计意图:欣赏组合图形的图案,给学生以美的享受,使学生感受到生活中组合图形的存在,并激发学生动手操作的`兴趣和欲望。】
三、动手操作,探究新知
1、出示情境
师:王老师家新买了一处房子,正在装修。但是准备铺客厅地板时遇到了难题,我们一起去看看。(电脑显示客厅平面图)
师:这是王老师家的客厅平面图,王老师要在上面铺木地板,她要买多少平方米的木地板呢?这就需要求出什么?谁能来估计一下。
师:谁估计得更准确呢?就必须计算出这个图形的面积。那么,怎样把这个图形转化成已学过的图形呢?
2、动手操作,合作探究
①独立操作寻找方法
师:请同学们利用手上的材料动手做一做。
②小组合作探究面积的计算方法
师:想好的同学以小组为单位说说你的想法。
③全班交流
师:谁能介绍一下你们是怎么样把这个图形转化成已学过的图形的?
学生介绍自己不同的想法。
【设计意图:小组合作,培养合作意识。培养学生的动手操作能力。电脑演示形象直观。引导学生用多种感官参与知识的形成过程给学生创设思维的空间,注意诱发学生积极体验。】
3、归纳方法
①我们在计算组合图形面积时用到了哪些方法?
学生自由发言,教师总结“分割”“添补”。
②讨论:怎样对组合图形进行合理、有效的分割?
4、计算组合图形的面积。
师:请同学们选择一种方法计算这个组合图形的面积。(生独立完成)
师:谁来说说你是用哪种方法计算的。
生介绍,师根据学生的介绍演示不同的方法。
师:这几种方法你们最喜欢哪一种呢?
生:第一种,第二种———
师:为什么?(引导学生选择分得最少的,计算又简洁的方法)
5、师小结:
不管是分割还是添补,都是将组合图形转化为学过的基本图形。在计算组合图形的面积时有多种方法,同学们要认真观察,多动脑筋,选择自己喜欢而又简便的方法进行计算。
【设计意图:注重方法的总结,鼓励学生对操作进行总结。】
三、反馈练习,及时巩固。
如今的信息时代,信息传递的实在是快,刚才大家解决难题的事很快就在外面传开了,这不老师又接到了几封求助信(大屏幕出示)愿意帮助他们吗?
1、来自农民伯伯的求助信:
同学们,下图是我家的花圃,请你帮我算一算一共有多少平方米?(出示课件)
2、来自工人阿姨的求助信:
我厂现在要生产一批零件,下图是这种零件的横截面图,你能帮我算出这种零件的横截面面积吗?(出示课件)
3、来自小红的求助信:
你能帮我算出少先队中队旗的面积吗?(出示课件)
独立完成,师生共同订正。
【设计意图:把数学和实际生活联系在一起,唤起亲切感和情感需要。】
四、小结
这节课你学会了什么?有什么收获?
【设计意图:锻炼学生总结概括能力,口语表达能力得到发展。】
《组合图形的面积》教学设计6
设计理念:
数学课的教学应当以注重引导学生亲历数学知识探究过程、突出思维训练为主要目标。主要设计理念是:一是以学生为课堂学习的主体,关注学生已有的学习基础和学习经验,选择适合学生的学习素材、设计适合学生的教学活动,让学生自主的投入学习,教师是学生课堂学习的引导者、合作者。二是以活动为课堂教学的载体,注重学习情境创设,引导学生主动进行观察、实验、猜测、验证、推理与交流等数学活动,去探究数学知识,亲历数学知识探索过程,感受成功的快乐。三是以问题为思维训练的源泉,教学中注重引导学生发现问题、提出问题和解决问题,在解决问题中激活思维。四是以生活为学习数学的基础,数学生活化,让学生在生活中感知数学知识,从生活中发现数学问题,在生活经验的基础上解决数学问题,并用所学知识解决生活中实际问题。
学情分析:
设计这节课的教学,教学对象是本校五(3)班59名学生。这个班的学生对课前教师布置的准备活动能积极准备,对学习数学有比较浓厚的兴趣,思维活跃,有自主探索知识的学习习惯,比如要求用基本图形(长方形、正方形、三角形、平行四边形、梯形等)展开想象拼图案,就能很好的准备。大部分学生有较好的数学知识基础和学习数学经验,善于合作,勇于面对知识挑战,有自主探究知识的激情,但也有少部分学生数学基础差,家长和学生本人都学得好坏无所谓,参与探究学习比较困难,不能按要求完成学习任务,比如他们在探索活动中不去认真感知、猜测、实验和思考,把自己置于旁观者得位置,不能达到预期的学习效果。总体看他们爱学数学,爱参与探究,希望有学习成功的快乐。
内容分析:
《组合图形的面积》是义务教育课程标准实验教科书(北师大版)五年级上册数学第五单元中的一节内容(北师大版义务教育课程标准实验教科书五年级上册75——76页的内容,这一内容是在学生已经学习了长方形与正方形,平行四边形、三角形与梯形的面积计算的基础上,进一步探讨研究图形的面积,也是日常生活中经常需要解决的问题。
教学目标:
知识目标:
1、在自主探索的活动中,理解计算组合图形面积的多种方法,并渗透转化的数学思想。
2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3、能运用所学的知识,解决生活中组合图形的实际问题。
情感态度价值观:在有效的情境中激发学生学习的兴趣的主动性,培养热爱数学的思想感情。
教学重、难点:
1、教学重点:学生能够通过自己的动手操作,掌握用分割法和添补法求组合图形面积的计算方法。
2、教学难点:理解计算组合图形面积的多种计算方法,根据图形之间的联系和一定的条件,割、补成学过的图形,选择最适当的方法求组合图形的面积。
教学策略:
以学生利用基本图形拼的图案将学生引入学习情境,以课件展示教师拼的图案引发学习问题,以课件中的图片欣赏让学生感受组合图形源于生活,以“剪——拼——议”实践活动学习解决问题的'方法和探究知识的方法,以解决生活中实际问题强化知识的应用。
教学准备:多媒体课件和组合图形图片。
教学过程:
一、激趣导入、复习铺垫
1、欣赏图片
2、动手拼
3、展示作品,全班交流
4、教师总结,揭示课题
二、创设情境、探究新知
出示课件:米奇的妙妙屋正在装修但遇到了几个难题,需要同学帮助,你们愿意吗?难题一:米奇打算给客厅(如图)铺上瓷砖,至少需要买多少平方米的砖呢?
1、估计地板的面积,板书数据
2、采用不同的方法求客厅的面积。
那实际上我们铺地板的时候,买多了浪费,买少了还要再买太麻烦了,那怎么办呢?
同学们观察一下这个图形,这是一个(组合图形),这样的图形的面积我们学过了吗?那么怎么办?
其他同学也是这样想的吗?
这就是我们今天所要探究的问题组合图形的面积(板书:面积)
同学们打算用什么方法求它的面积?(停顿)
很多同学都有自己的想法
请把你的想法用虚线在客厅平面图中表示出来。再与小组成员说说自己的想法
生动手画图。
汇报交流:同学们做好了吗?刚才看同学们讨论得非常热烈,能感觉到咱们班的同学都很喜欢动脑筋,现在谁来说说你的想法?
3、师生归纳方法并比较
观察找特点
根据学生的汇报小结三种基本方法(板书)(其实不管是用割还是补甚至是割补,我们都是为了一个共同的目的,那就是把这个组合图形转化成以学过的平面图形。)
引导比较,找出最简单的方法(是啊,分成的图形越少,计算面积时就越简便,所以我们以后在计算组合图形的面积时要学会选择简便的方法进行计算。)
学生独立计算。(现在你会计算这个组合图形的面积吗?)
汇报交流
引导比较(同学们现在我们已经计算出了这个组合图形的面积,请把计算出的正确答案与刚才同学们估计的数据比较一下,有的估计偏大了有的偏小了)
4、归纳算法
刚才我们帮米奇计算出了客厅的面积即组合图形的面积。现在一起来回忆计算组合图形面积的计算过程。
师生齐说:刚才我们先用割或补、割补的方法把组合图形转化成了以前学过的平面图形,然后找出计算每个小图形所需的条件,再计算出组合图形的面积。
三、实际应用、解决问题
1、计算墙壁的面积
观察图形——选择方法——独立计算——汇报交流
老师知道同学们一定还有很多不同的计算方法,但你们的答案和这两位同学一样吗?
是啊,同一个组合图形可以用多种不同的方法来计算面积,但都不能改变答案的唯一性。
2、求门油漆的面积。
同学们以自己的聪明才智帮米奇又解决了一个难题,可还得请你们再帮再一个忙,油漆6扇这样的门,(1)需要油漆的面积一共是多少?(单位:米)(2)如果油漆每平方米需要花费5元,那么花费需要多少元?
这里有什么需要注意的地方吗?谁来给同学们提醒一下?
生独立算完后指名汇报。
和他方法一样的请举手?为什么你们都选择添补的方法呢?
是啊,计算组合图形的面积并不是所有的方法都适用的,咱们要学会根据条件选择合理的方法。
四、归纳小结、提升知识
这节课我们主要学习了什么内容经过同学们认真的思考研究讨论,我们总结了很多种方法,有分割法,添补法,割补法。
《组合图形的面积》教学设计7
设计理念:
本节课的中心与着力点是“方法”的体会与感悟,计算面积不是刚学,不是重点,但不能忽视,可以加大力度;还要指导学生能根据各种组合图形的条件,有效地选择方法。在整个探索过程中,相信学生,鼓励学生,给予学生充足的独立思考、交流讨论的时间。
本节课还得预设学生在学习过程中可能出现哪些问题,做好提前准备,这样到课堂上才能真正做到“以不变应万变”。
教学目标:
知识目标:
1、在自主探索的活动中,理解组合图形面积的计算方法。
2、能根据各种组合图形的条件,灵活有效的选择计算方法并进行正确的解答。
能力目标:
1、能运用所学的知识,解决生活中组合图形的实际问题。
2、通过图形的。组合和分解培养分析问题、解决问题的能力及动手创新的意识学会把复杂问题转化为简单问题,渗透转化思想。
情感与价值观目标:
1、通过动手操作,给学生以美的享受,并能展示自我,张扬个性。
2、让孩子体验到成功的喜悦,培养了学生战胜困难的决心和勇气,团结友爱的美好情感。
教学重点:
在探索活动中,理解组合图形面积计算的多种方法,会找出计算每个简单图形所需的条件。
教学难点:
选择有效的计算方法解决实际问题。
教学过程:
一、复习旧知,引入新课
1、师:我们会求哪些平面图形的面积了?请回忆下面积计算公式。
2、看黑板上一些正六边形(六边相等、六角相等),你有它们的面积计算公式吗?那要求它的面积,怎么办呢?(转化成我们学过的图形)
[设计意图:让学生初步体会到学过的'面积计算方法应用的广泛性,渗透转化思想,培养空间观念。]
二、探索组合图形面积计算方法
1、割
那你能想办法用学过的方法来求正六边形的面积吗?请上来画一画说一说。
这些同学的方法可以归结为一个字:割。就是把一个没学过的图形割成学过的图形,然后利用面积公式算出每一块面积,再求出整个图形的面积。且方法千变万化,只要你有目标,就一定能成功。
[设计意思:拓展思维,一题多解,感受探索的乐趣,培养学生学平面图形的兴趣。]
2、补、大面积-小面积
出示一个组合图形
(1)师:请同学们选择一种方法计算这个组合图形的面积。(生独立完成)
师:谁来说说你是用哪种方法计算的。
生介绍,师根据学生的介绍演示不同的方法。
师:这几种方法你们最喜欢哪一种呢?
师:为什么?(引导学生选择分得最少的,计算又简洁的方法)
(2)这儿又有一种新方法,没有把组合图形分割,而是补上一块。(板演:补),算出补后的大面积,减去补上的那部分面积,便可得出原来图形的面积。(板演:大面积-小面积)
3、小结求组合图形面积常用的方法割、补、大面积-小面积。
4、小试牛刀
课后第一题。
请说说你用了什么方法。你更喜欢哪种方法?
5、挑战
(1)独立思考
(2)讨论
(3)移、拼的方法
[设计意图:从易到难,层层深入,引出求组合图形面积的常用方法]
三、回顾本节课所学,你有什么收获吗?在求组合图形面积时,你有什么要提醒大家的吗?
[设计意图:锻炼学生总结概括能力,口语表达能力得到发展。]
四、练习:课后2、3
《组合图形的面积》教学设计8
设计说明
本节课的内容是在学生已经学习了长方形、正方形、平行四边形、三角形和梯形的面积计算方法的基础上进行教学的。在教学中以引导学生经历知识的探究过程,突出思维训练为主要目标。
1.以学生为课堂学习的主体,关注学生已有的学习基础和学习经验。在教学过程中,选择适合学生的学习素材,设计适合学生的教学活动,让学生自主地投入到学习中,教师只作为学生课堂学习的引导者、合作者。
2.重视对学生估算意识和能力的培养。在教学过程中,引导学生主动进行观察、猜测、验证、推理与交流等数学活动,让学生经历数学知识的探究过程,感受成功的快乐。
3.完成课堂活动卡,把学生的算法进行归纳总结,分类整理,让学生在感受算法多样性的同时,形成归纳概括的.能力。
课前准备
教师准备:PPT课件
学生准备:学具卡片
教学过程
⊙创设情境,复习引入
1.引导学生回忆常见平面图形的面积计算方法。
(课件出示长方形、正方形等图形,指名回答各自的面积计算公式)
2.引导学生观察组合图形的特点。
(课件出示由长方形、正方形、三角形等组合而成的图形)
师:同学们观察这些图形,它们分别是由哪些图形组成的呢?(学生观察后回答)
师讲解:这样的图形,我们称为组合图形。今天我们就一起来探究组合图形面积的计算方法。
设计意图:通过复习旧知,使学生兴致勃勃地投入到新知的学习中去,变好奇心为浓厚的学习兴趣。
⊙合作交流,探究新知
1.估计组合图形的面积。
(课件出示教材88页例题图)
师:请同学们观察一下,这是什么图形?(组合图形)
师:这是智慧老人家客厅的平面图。智慧老人准备给客厅铺上地板,你们知道应该买多少平方米的地板吗?
(1)学生估计至少要买多少平方米的地板。
(2)组内交流估计的方法。
预设
生1:把客厅看成长方形,6×7=42,客厅的面积不到42m2。
生2:把客厅看成边长是6m的正方形,估计其面积是36m2。
2.实现转化,明确求组合图形面积的解题思路和解题方法。
(1)质疑:怎样求这个组合图形的面积呢?
(引导学生根据刚才的估计策略把组合图形转化成已经学过的规则图形,再计算其面积)
(2)动手实践,探究转化的方法。
(引导学生利用自己手中的学具,把组合图形转化成已经学过的图形)
①小组合作探究,将探究的结果填在课堂活动卡上。
②各组组长汇报本组的转化方法和转化结果,教师进行汇总。
师:你们是怎样转化的?分别转化成了什么图形呢?
分割法:
添补法:
割补法:
(3)观察比较,优化解题方法。
师:在这些转化方法中,哪些方法比较简单、容易计算呢?
预设
生:在这些方法中,图一、图二、图三、图四比较简单,容易计算。
师:在进行图形转化时,我们的要求是简单、易算。
《组合图形的面积》教学设计9
新课标明确指出数学教学是数学活动的教学,是师生之间交往互动与共同发展的过程。在教学中要创设有助于学生自主学习的问题情景,激发学生学习的潜能,鼓励学生大胆创新与实践。
【教学活动】
一、创设问题情景(多媒体出示课件)
老师:在一块长16m、宽12m的矩形荒地上,要建造一个花园,并使花园所占面积为荒地面积的一半。假如你是设计师,你能设计方案吗?
布置任务:同学们认真审题,理解题意后,分组进行讨论,设计具体方案,并说说你的想法。
二、活动与探索
各小组纷纷讨论设计(电脑机房,用“几何画板”画图),教师巡视,然后请各小组代表发言。
小组1:我们组设计的方案如图(1)所示,连接矩形的对角线把相对的两个三角形作为花园,整个图形对称美观。且根据矩形的性质一定成立。
老师:噢,同学们设计来想一想,小组1的设计符合要求吗?
学生1:小组1的设计符合要求,只要过矩形对角线交点的直线与对边相交,都会把矩形面积平分。
老师:很好,那你们组设计的方案是什么?是否有别的思路?
小组2:我们组的设计方案如图(2)所示,花园的四周是小路,它们的宽度都相等,这样设计既美观又大方。通过列一元二次方程解得小路的宽是2 m或12 m。
老师:是吗?大家想一想,小组2的设计符合要求吗?若符合,请说明是如何列方程求解而得的?若不符合,请说明理由。
学生2:小组2的设计符合要求。
我们可设小路的宽度为x m,根据题意,列方程:(16-2x)(12-2x)= ×16×12,化简得x2-14x-24=0,然后利用配方法来求解这个方程,即,x2-14x=24,(x-7)2=25,x-7=±5,所以,x1=2,x2=12。因此小路的宽度为2 m或12 m。
综上所述知,小组2的设计方案符合要求。
学生3:不对,因为荒地的宽度只有12 m,所以小路的宽不能为12 m,因此小组2方案的结论不妥当,应改为:花园四周小路的宽度只能是2 m。
(大家不约而同地鼓掌)
老师:好,从大家的掌声中可知学生3说得在理。我们在解决实际问题时要注意解的合理性。因为一元二次方程有两个根,不一定都符合实际问题,解完之后要按题意来检验这两个根是否为实际问题的解。这一点,学生3所在的组做得很好,大家要学习他从多方面考虑问题。接下来我们来看其他组设计的方案。
小组3:受第一组的启发,我们组又设计了一个方案,如图(3),以矩形的对角线的'交点为圆心,以5、53 m长为半径在矩形中间画一个圆,这个圆也可作为花园的场地。
小组4:我们也设计了一个方案,如图(4)。
以矩形的四个顶点为圆心的扇形,和小组3的一样,扇形的半径为5、53 m,我们把扇形以外的荒地作为花园的场地。
老师:同学们的方案设计得都很好,能触类旁通,太棒了!其他组怎么样?
小组5:我们组设计的方案如图(5)。
以一边的中点为顶点的等腰三角形作为花园的场地。因为图中阴影部分的面积为69 m2,刚好是矩形面积的一半,所以这个设计也符合要求。
小组6:我们组设计的方案如图(6)。顺次连接矩形各边的中点,所得的平行四边形作为花园的场地。因为矩形四个顶点处的直角三角形都全等。每个直角三角形的面积是24 m2,所以四个直角三角形的面积之和为96 m2,则剩下的面积也正好是96 m2,即等于矩形面积的一半。因此这个设计方案也符合要求。
小组7:我们组设计的方案如图(7)。图中的阴影部分可作为建花园的场地。经计算,也符合要求。
小组8:我们组的设计方案如图(8)。图中的阴影部分是作为建花园的场地。
老师:噢,同学们能帮助求出图中的x吗?
生:能,根据题意,可得方程:2× (16-x)(12-x)= ×16×12,即x2-28x+96=0,(x-14)2=100,x-14=±10。所以x1=24,x2=4。因为矩形的长为16 m,所以x1=24不符合题意。因此图中的x只能为4 m。
老师:同学们真棒,通过大家的努力,设计了这么多在矩形荒地上建花园的方案。还有没有其他不同的方案?
学生4:我的设计方案如图(9)所示。不知是否可行。
老师:你能求出图中的x吗?
解:根据题意,得(16-x)(12-x)= ×16×12,即x2-28x+96=0。解这个方程,得x1=24(舍去),x2=4。所以x=4。
老师:真的不容易,同学们的方案真是五花八门。不仅应用所学的知识解决了实际问题,而且各个设计还注意了图形的对称性。大家肯定还有其他不同的想法,我们课后再交流。以后,若你家要建花园,可千万别错过这样的机会。
《组合图形的面积》教学设计10
教学内容:义务教育课程标准实验教科书小学数学五年级上册第92至93页的内容。
教学目标:
1、认识组合图形,会把组合图形分解成已学过的平面图形。
2、通过找一找、分一分、拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”、“补”等方法来计算组合图形的面积。
3、培养学生的观察能力和动手操作的技能,发展空间观念,提高思维的灵活性。
4、通过拼组图形,使学生感受数学与现实生活的密切联系,体会数学带给大家的生活美。
教学重点:探索并掌握组合图形的面积计算方法。
教学难点:理解并掌握组合图形的组合及分解方法。
教具准备:多媒体课件
学具准备:各种有色卡纸、胶水、剪刀等。
教学过程:
一、复习铺垫:
同学们,老师想知道你们已经学会了计算哪些平面图形的面积?
二、创设情境,激趣导入。
师:大家学会的知识可真多。为了奖励你们,老师请你们去欣赏一些美丽的建筑物,好吗?请同学们欣赏时认真想想:你发现了什么?(课件展示)
师:同学们观察得真仔细!除了这些外,老师也发现了一些这样的图形:
(课件展示)
我们学过这些图形吗?
请同学们认真观察,这些图形有什么共同的特征?
左边由几个图形组成?右边呢?大家想想看一个图形还可能是由几个图形组成的呢?
像这些由几个简单的图形组合而成的图形,我们给它取个什么名字好呢?你是怎么知道的?(板书:组合图形)这节课你们想探究组合图形的哪些知识?
三、自主学习,探究新知。
1、组合图形的分解:
师:组合图形在日常生活中有着广泛的应用,我们一起来认识生活中的组合图形。
⑴电脑出示书第92页的四幅主题图。
师:认真观察这四幅图,它们分别是由哪些简单图形组成的?请同学们打开书本92页,先找一找,然后在四人小组内互相讨论。比比看哪一个小组的分法最简单?
⑵四人小组讨论。
⑶小组到实物投影机上展示各种分法。
⑷让学生举例说说生活中的.组合图形。
同学们,开动脑筋想想:生活中哪些地方还有组合图形?
2、自主解决例题。
师:同学们真棒呀!知道生活中存在着很多美丽的组合图形,那如果老师想知道这些组合图形有多大,实际上是求什么?(板书:的面积)你们会求吗?下面老师考考大家是不是真的会?
⑴出示例题4
⑵生独立解答。还有其他解法吗?如果有困难,小组内互相帮助。(两学生板演)
⑶生汇报。
师:你是怎样想的?这两种解法你喜欢用哪一种解法?说说你的理由。
师生小结:从例题中我们可以看出,同一个组合图形,由于分解的方法不同,解法也就不同。所以请同学们想想,求组合图形面积时关键是做什么?(板书:分解)
⑷生看书质疑。
师:下面老师再考考你们是不是真的明白。
3、出示做一做。问:这块地是由哪些简单图形组成的?
⑴生独立计算。
⑵生展示思路。
四、应用新知,解决问题:
师:同学们不仅合作做得好,独立解题也很棒。下面我们就用今天所学到的知识解决生活中的问题。
1.选择题:
(1)
上图阴影部分的面积是()
①6平方厘米②10平方厘米③5平方厘米
(2)下面是一块正方形空心地砖,它实际占地面积是()
①40×40+13×13 ②40×40-13×13③40×40
(3)下图的面积计算式子是()
①12×5+8×6.5②12×5+8×6.5÷2③8×6.5+(8+12)×5÷2
师:通过刚才的练习,你认为该怎样求组合图形的面积?
生自由发言。
师小结:可见求组合图形的面积可以用相加的方法,也可以用相减的方法。(板书:相加或相减)
2.求中队旗的面积。
师:看来今天大家都掌握得很好。可是老师被一个难题难住了。咱们班同学准备去秋游,学校要求我们制作一面中队旗。(出示中队旗)可老师不知道要用多少布。同学们能否用今天所学的知识来帮帮老师呢?动手算一算。请小组内分工合作。
(1)出示讨论提纲:
你们组能想出几种算法?有没有更简便的方法?
看哪一小组分工合作的最好?速度最快?
(2)小组分工合作。
(3)展示学生的各种算法。
师生小结:从练习中我们知道在求组合图形的面积时,要根据已知条件对图形进行分解,不是任意分解都能计算的。分解图形时要考虑尽量用简便的方法计算。
(板书:根据已知条件进行分解)
五、新知的拓展:组拼组合图形
谢谢你们,老师终于知道了需要买多少布了。早上老师又接到一个任务,学校的艺术节快到了,要展览同学们的作品。老师想利用这节课把这个任务完成好,大家愿意吗?请各小组用几个简单的图形组合成一个美丽的图案。看哪一小组拼得图案最美丽,就把他们组的作品拿到艺术节上去展览。同学们赶快动手吧。
1、学生合作组拼。
2、展示评价学生的作品。
3、选择其中一幅学生作品,让学生说说该怎样做才能求出它的面积。
六、总结:
通过这一节课的学习,同学们有什么收获?你认为自己的表现怎样?哪位同学表现的最好?有哪些不明白的地方?
附:板书设计
教学设想:
《数学课程标准》的基本理念中指出:学生的数学学习内容应当是现实的、有意义的、富有挑战性的;学生的数学学习活动应当是一个生动活泼、主动的和富有个性的过程。如何把这个基本理念应用到数学课堂教学中呢?在教学《组合图形的面积》这一课中,我针对这一理念,作了尝试,创设了生动的生活情境,精心设计了学生的学习内容。
《组合图形的面积》教学设计11
一、教学内容
本节课室是学生在学习了多边形面积的基础上进行的一节复习课。本节课通过学生回忆所学过的所有平面图形的面积计算公式的推导过程,巩固学生对计算公式的理解和记忆,并通过图形之间的内在联系构建知识网络图,是学生明白这些图形不是孤立存在的,而是有联系的,在网络图的构建过程中,从单个图形,连成串,再连成片,从而使知识系统化,留给学生一个整体印象,而不是分散的记忆。最后通过由浅入深的练习题,使学生所学的知识得到进一步升华。
二、教学目标
根据教学内容,我把教学目标设定为:
1、回忆所学的平面图形的面积推导过程,弄清图形面积之间的内在联系,巩固学生对面积计算公式的理解和记忆。
2、通过整理知识网络图进一步发展学生的空间观念,提高学生分析和综合概括的能力。
3、让学生通过灵活运用知识解决实际问题,提高不同层次学生解决实际问题的能力。
4、体会数学与生活的联系,培养学生学习数学的兴趣,以及良好的学习习惯和学习态度。
三、教学重难点
结合教学目标的设计,我把本节课重点是:通过整理知识网络图进一步发展学生的空间观念,提高学生分析和综合概括的能力。难点是:通过灵活运用知识解决实际问题,提高不同层次学生解决实际问题的能力。
四、教法、学法教法
根据本课的教学内容,本课采用先整理后练习的复习模式
五、指导思想
本课的指导思想是发挥学生的主题作用,引导学生自主学习,使不同学生在数学课上得到不同的发展。《课标》指出:动手实践、自主探索与合作交流是学生学习数学的重要方式;学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。本课在回忆—整理—应用的教学环节中,通过教师引导和点拨,提高学生的归纳整理知识的能力,并充分调动了学生的学习积极性,从而提高了学生运用所学的知识解决问题的能力。
六、教学过程
教学过程本节课主要分为五个教学环节:
(一)整理和复习
1、回忆课的开始,我让学生回忆学过的平面图形的面积,想到哪个说哪个,给了学生选择的余地,提高学生回答问题的兴趣。然后让学生回忆推动过程时,采取了先让同桌交流的方法,这是因为我分析学生可能会想到不同图形的面积推导公式,为了照顾不同层次的学生,让学生能人人动口,提高学生的语言表达能力。
2、整理在整理的过程中,学生边说,我一边用课件演示,空间想象能力强的学生可以闭上眼睛在头脑中演示这个过程,空间想象能力弱的学生,可以借助多媒体来回忆,以便帮助他们更好的理解记忆面积公式。
(二)构建知识网络图构建知识网络图是课前我比较担心的,我不知道学生会把知识网络图构建成什么样子。虽然课上在我的引领下这样比较好控制,但是为了照顾不同层次的学生,我把这项工作放在了课前,先让学生在家里整理好,这要就避免了学生之间相互模仿,无法体现个性;再通过课上的回忆让学生自己修改,使学生逐步学会整理归纳的方法;最后同学之间交流,完善知识网络图。在这个环节,面对学生构建的知识网络图,只要有道理我就会给予肯定,这样才能使学生敢于发表自己的意见,体现个体差异,增强自信心。
(三)解决问题在解决问题的过程中,我用了羊村村长领着大家去羊村参观这一情境,充分调动了不同层次学生的学习积极性。要想去羊村参观就得闯关成功,这三关分别针对不同方面:第一关针对的是我们班的学困生,这些题让他们回答,可以使他们获得成功的体验,帮助他们树立自信心,提高学习数学的兴趣;第二关考验学生是否能灵活运用面积公式,针对的是中等学生;第三关是对学生在面积计算中经常出现错误的地方进行针对性练习,面向全体学生,以提高做题正确率。闯关成功后,计算玻璃的'面积,是解决实际生活中的问题,让学生体会到数学与生活的联系。这块玻璃是一个组合图形,既可以用分割法计算,又可以用添补法计算,学生自己动手分一分、画一画,用自己的方法计算,充分体现了学生的个体差异。为了帮助学生理解,我制作了课件进行演示,直观形象,针对学困生降低了难度。
(四)课堂作业课堂作业的设计也充分考虑到了不同层次的学生,第1题和第题较为简单,学优生做完后,给出了一道思考题,这道题为学有余力的学生准备。
(五)小结今天我们复习了多边形的面积,并利用图形之间的内在联系制作了知识网络图,还运用所学帮助羊村解决了实际问题,在这里懒羊羊代表羊村谢谢大家,带给大家一首好听的歌,请大家伴随着歌声下课。总之,我认为要想上好复习课,提高课堂有效性,就应该整体把握教材,采取合适的复习形式,关注学生的个体差异,从教学设计、教学方式、方法,以及练习题的准备等方面都要考虑到不同层次的学生,使学生通过自主参与、合作交流,不同学生得到不同的发展。真正体现新《课标》所说的人人学有价值的数学、人人都能获得必需的数学、不同的人在数学上得到不同的发展。以上是我个人对数学复习课教学的一点感触,不妥之处,请老师们多批评指正。
《组合图形的面积》教学设计12
教学过程:
一、认识组合图形。
1、师生谈话导入:什么是组合图形?
(1)出示火箭模型的平面图。观察一下,你有什么发现?
(2)像长方形、三角形、梯形等这些都是我们已经认识的简单的平面图形,那么这个图形与它们有什么关系呢?
(3)揭示名称与含义:组合图形是由几个简单的平面图形组合而成的。
2、在我们身边有不少物体表面的形状是组合图形。说一说,这些组合图形是由哪些图形组成的?
3、学生自己试举例说明。
二、计算组合图形的面积。
1、揭示课题。
(1)出示中队旗,计算它的面积。
80cm
20cm
30cm
30cm
(2)谈话:中队旗是什么形状?要求做一面队旗要多少布就是求它的什么?怎样求组合图形的面积,下面我们一起来研究这个问题。(出示课题:组合图形的面积)
2、学生尝试。
(1)学生讨论算法。
(2)独立计算。鼓励用不同的做法。
演板:
(80-20+80)×30÷2 80×(30+30)-(30+30)×20÷2
= 4200(平方厘米) = 4200(平方厘米)
(80-20)×(80-20)+30×20÷2×2
= 4200(平方厘米)
(3)比较:哪种方法比较简便?
2、小结:用哪些方法可以计算组合图形的面积?
三、巩固练习。
1、计算花坛的面积。
让学生感受:不是任何分解都可以计算的,要根据条件进行分解。
2、求火箭平面图的面积。
3、选一个求字母“l”和“n”的面积。
四、总结。
你有什么感受?
五、作业。(略)
六、板书:
组合图形的面积
(80-20+80)×30÷2 80×(30+30)(80-20)×(80-20)
= 4200(平方厘米) -(30+30)×20÷2 +30×20÷2×2
= 4200(平方厘米) = 4200(平方厘米)
课后反思:
学生的.经验和活动是他们学习空间图形的基础。他们对组合图形的认知是通过观察获得的,关于组合图形的面积计算又是建立在认知的基础上。因此本课的教学设计,是根据数学新课标的基本理念,铺设学习情境,让学生主动参与,灵活运用积累的经验解决问题,体现了数学学习是“经验”、“活动”、“思考”、“再创造”的特点。
一、 导入——铺设学习情境。
《数学课程标准》在课程实施建议中明确指出:“数学活动要紧密联系学生的生活实际,创设各种情境,为学生提供从事数学活动的机会,激发对数学的兴趣,以及学好数学的愿望。”学生的学习,往往带着浓厚的感情色彩,在熟悉的情境中,他们就能够自觉地、顺利地参与到学习中来。在本节课中,先让学生观察火箭模型的平面图,让他们说说有什么发现,激活他们已有的知识经验,通过感受由几个简单图形的组合,揭示组合图形的含义。再让他们分析身边物体表面中的组合图形,把数学与生活紧密联系起来,激发学习的兴趣。
二、尝试——开启创造之门。
弗莱登塔尔认为,学生学习数学是一个有指导的再创造。数学学习的本质是学生的再创造。在本课的教学过程中,有意识的为学生提供具有充分再创造的通道,激励了学生进行再创造的活动。课堂中采取了这样一些策略:设计富有挑战性的问题,激发学生主动思考和创造的愿望。为学生提供比较充足的探索与创造的时间、空间,让学生尽量释放创造的潜能。如:计算中队旗的面积时,要求学生先仔细观察这个图形,然后这样设问:“你能自己试着来解决这个问题吗?”学生经过自主的思考,能创造出不少的方法来计算组合图形的面积。课堂上学生在自身的自主探索中或者在与同伴的合作交流中,放飞着思维,张扬着个性,在互补反思中得到共同的提高,充分体验到了成功的乐趣,从而真正意义上的成为了学习的主人。还有一个学生在其他不同的方法后,又提出他独特的观点:把组合图形分成两个梯形,再把两个梯形拼成一个长方形来计算它的面积。他的想法恰恰运用了“出入相补”的原理。这正是知识、方法融会贯通的体现。
“给我一个杠杆,我可以撬起地球”,我们还有什么理由不相信学生惊人的创造力呢?
三、练习促进动态生成。
让学生体会到数学的价值,力求人人学有价值的数学,以满足学生适应未来学习、生活的需要。在练习的设计中,我安排了这样三个层次:第一、只列式不计算。让学生明确求组合图形的面积,要根据数据进行分解,不是所有的分解都能进行计算的。第二、解决具体问题,计算火箭模型的平面图的面积。第三、解决实际问题,练习设计打破学科界限,让学生喊出英文单词“lion”,然后在英文乐曲中,选择计算“l”或“n”的面积。学生学得趣味
《组合图形的面积》教学设计13
一、教学目标
1、复习巩固各种图形面积的计算方法,明确组合图形是由几个简单图形组合而成,求组合图形的面积就是求几个简单图形的面积的和或差的计算,提高学生的识图能力,分析综合能力和空间想象能力。
2、通过实践操作、练习,提高观察、分析能力和解题的灵活性;能正确地分析图形。
3、培养学生的合作、探究意识及创新精神,及积极参与数学学习活动的习惯。
二、教材分析
组合图形面积是在长方形、正方形、平行四边形、三角形和梯形这五个基本图形的面积公式学习之后,进行的一种由形象到抽象的学习。解题的基本理念是将组合图形转化为基本图形进行计算,需要发散学生的思维,会分析图形的构成,能够正确分析图形的隐含数据条件,鼓励学生一题多解。
三、学校及学生状况分析
我校是北京市海淀区的一所学校,多媒体设施比较齐全,可以进行课件演示及实物投影多媒体辅助教学,而且是北师大版新世纪五年级教材的实验学区。
组合图形面积是由直观走向抽象的一节内容,重在方法的挖掘。在教学中,不能以教师为中心来死搬硬套教材,应合理地利用了教材资源。使学生更宽泛地理解什么是组合图形,更大限度地激活每个学生寻求组合图形面积计算的思维动力,然后逐步展开有层次的思维训练,开阔学生的思维空间,鼓励学生积极探索。
四、教学设计
(一)观察动画,复习旧知,引出新知
1、观察动画,分析引入
(媒体出示由基本图形拼成的太阳、狗、房子、小鸡、花草树木等)
师:观察这幅图画,你发现了什么?
生:很多的基本图形,组成了很多的图形)
师:这些由基本图形组合而成的图形,就叫做组合图形。
2、复习基本图形面积公式
师:还记得我们都学过哪些基本图形吗?
(随着学生回答,按学习的顺序贴各个基本图形)
问:那谁还记得这些基本图形的面积公式?
(随着学生回答,在各个基本图形后面写公式)
师:真不错,看来同学们对面积公式知识的掌握相当扎实。那像这些组合图形,怎么求面积呢?有同学已经有想法了。今天这节课,我们一起来探索组合图形面积的计算方法?(板书:在组合图形后面增加“面积” )]
(二)动手拼图,初探方法
1、自拼图形,分析要素
师:拿出你的学具袋和做题纸。请一位同学来给大家读读要求吧。
请你从学具中任选两个基本图形,拼出一个组合图形,粘在答题纸的`方框内。
边做边思考:
师:你拼的组合图形由什么基本图形组成的?这些基本图形的要素是什么?
师:现在,就请你挑出你喜欢的基本图形,来拼一个组合图形,并和小组内的同学讨论一下,怎么求你这个组合图形的面积呢?
(学生活动,教师巡视,指导画高。)
2、展示图形,分析条件
(学生分别介绍所拼的组合图形后,教师选择其中的一个作重点分析。)
师:现在,我们来看右面的组合图形(见右下图),它是由一个三角形和一个长方形组成的。有一条边既做三角形的底又做长方形的长,是公共边。
(强调公共边:既做长方形的长,又作三角形的底。)
3、打开思路,探索面积
师:怎样求一个组合图形的面积?
生:分另计算三角形与长方形的面积,然后相加。
师:谁能说一说具体的计算过程?
《组合图形的面积》教学设计14
一、学习“变异理论”,有所思
“组合图形的面积计算”这一内容是学生在学习了长方形、正方形、平行四边形、三角形和梯形的概念及面积计算的基础上,结合实际情境和具体图形,探索组合图形面积的计算方法。这一内容既是对长方形、正方形、平行四边形、三角形与梯形面积计算的进一步拓展,又是数学知识应用于实际问题的体现。这一内容旨在发展学生的空间观念,提高学生分析问题和解决问题的能力。
针对“组合图形的面积计算”这一内容,我的第一次教学设计了三个环节:一是回顾学习过的平面图形及面积计算方法,回忆推导平行四边形、三角形和梯形面积公式过程中运用的方法及得到的启示;二是通过创设“给小华家的客厅铺地板”这一情境,探索组合图形面积的计算方法,并把学生计算组合图形的方法分类、命名(分割法、割补法和添补法);三是巩固练习并小结。
针对我的教学设计,“变异理论”课题组的老师展开研讨,最终指出两个关键问题:一是教学“组合图形的面积计算”这一内容时,教师首先要帮助学生建立“组合图形”的概念。二是探索“组合图形的面积计算”时,例题要丰富,以利于学生真正理解和掌握。
“变异理论”鼓励教师在教学中采用多种多样的“非标准正例”,以使学生在多样化的问题情境中找到解决问题的共同规律。在教学中,学生在把分别求出的简单图形面积整合为组合图形的总面积时,最易犯两个错误:一是忘记把计算时增加的图形面积减去,二是忘记把分别计算的部分面积相加。上述两个错误说明学生对“组合图形”的概念理解不深,因而在计算“组合图形”时具有一定的盲目性。
二、运用“变异理论”,有所为
在备课过程中,由生活实例认识“组合图形”的思路给我启示,于是,联系“变异理论”,我增加了认识“组合图形”的教学环节。根据“变异理论”,列举“正例”和“非标准正例”对于学生认识概念的基本属性具有重要作用。因此,在引导学生认识“组合图形”的环节中,我特意将“正例”和“非标准正例”先后呈现,以使学生全面认识“组合图形”的多样性。首先,我让学生观察房子、风筝和七巧板等“组合图形”,请学生说说这些“组合图形”是由哪些简单图形组成的,从而引出“组合图形”的概念。其次,我出示中国少年先锋队队旗,让学生通过动手操作感知“组合图形”。最后,我请学生观察周围的物品,让学生找找哪些物品的表面形状是“组合图形”,以加深学生在生活中对“组合图形”的认知。崭新的教学设计正是通过富于变化的“正例”和“非标准正例”,有序、完整地呈现了“组合图形”的基本属性(包含简单图形,是由几个简单图形组合在一起形成的)。一方面,学生通过观察房子、风筝和七巧板这些“组合图形”(“正例”)认识了“组合图形”的一般形式;另一方面,通过观察中国少年先锋队队旗(“非标准正例”),学生进一步认识到“组合图形”在基本属性保持不变的情况下,可展现多样化的形式。正是在例证的有序变化中,“组合图形”的基本属性凸显出来,有助学生准确地理解和掌握。
在教学“组合图形的面积计算”这一内容时,为了避免学生以往经常犯的错误(即在算出基本图形的面积后忽略了相加或相减),我决定准备充分的“非标准正例”,以使学生理解“组合图形”的面积是基本图形面积相加或相减的结果。
分析这三个例题:例1可运用分割法把基本图形的面积相加,最终求出菜地的.面积;例2可运用添补法把基本图形的面积相减,最终求出草地的面积;例3除了可运用分割法、添补法,还可运用割补法使队旗形成一个基本图形,最终求出队旗的面积。这三个例题的选择,不仅考虑到计算方法的多样化,更将已学的长方形、正方形、平行四边形、三角形和梯形这些基本图形全覆盖。通过列举“非标准正例”,既强化“组合图形”的基本属性,又让学生充分掌握组合图形面积计算的多种方法。
三、反思“变异理论”,有所悟
我原来的教学设计是通过“给小华家的客厅铺地板”这一例题,即通过一个教学情境让学生探索“组合图形的面积计算”。修改后的教学设计中,我运用了三个不同的“非标准正例”,这样不仅有效地强化了学生对“组合图形”基本属性的认识,更将算法的多样化建立在多个“组合图形”的基础之上,进而将对“组合图形”的认识有效地迁移到组合图形面积的计算上。反过来,运用多个“非标准正例”计算“组合图形”的面积,进一步巩固了对“组合图形”的基本属性的认识。
《组合图形的面积》教学设计15
教学内容:
人教版义务教育课程标准实验教科书,数学五年级上册第五单元92~94页。
教材分析:
组合图形面积的计算放在多边形面积计算最后学习,有利于综合运用平面图形面积计算的知识,进一步发展学生的空间观念。
1、认识组合图形。
由于实际生活中,我们见到的物体表面,许多是由我们已学过的正方形、长方形、平行四边形、三角形和梯形组合成的图形,所以教材紧密结合生活实际认识组合图形。
教学中,可以使用教材中的实例,也可以应用学生身边的实例;观察实物注意从易到难;找生活中的组合图形时,要强调从物体的表面上找,不要与立体组合图形混淆。
2、学习组合图形面积的计算,因为限于简单的组合图形,教材主要安排2~3个简单图的形组合。由于一个图形可以有不同的分解方法,教材展示了两种计算方法。
教学时,可让学生合作探究,通过试做、交流、讨论、展示,使学生明确计算组合图形面积的基本思路,即可以把组合图形分割成我们已经会计算面积的简单图形,分别计算出他们的面积,再求和,或者把原图添补成我们已经会计算面积的简单图形,再减去所添补图形的面积,也就是添补求差法,同时也要让学生认识到要根据已知条件对图形进行分解,不是任意分解都能计算的。鼓励学生用不同的方法去计算,然后交流各自的算法,尽量考虑用简便的方法计算。
教学目标:
1、认识简单的组合图形,会把组合图形分割成学过的平面图形并计算出面积,渗透转化思想。
2、综合运用平面图形面积计算的知识,感受解决问题策略多样性,培养学生尝试选用简便方法解决问题的意识。
3、培养学生的认真观察、合作学习、独立思考的能力,进一步发展学生的空间观念,激发学生探索数学问题的积极性。
教学重点:能根据组合图形的特点,有效地选择计算方法。教学难点:算面积时,能结合生活实际,把组合图形有效地转化成已学过的图形。
教具准备:课件、卡纸。教学过程:
一、游戏导入
1、玩摸一摸的游戏,看摸出的是什么图形,说出它的名称和面积的计算方法?让学生回答后把它贴在黑板上。
2、玩拼一拼的游戏,让学生至少选择其中的两个图形把它组合在一起,看看会是什么图形?
3、找出它们的共同点:都是由简单的图形组合成的,像这样的图形叫做组合图形。随即板书:组合图形。
【设计意图:通过游戏的形式既复习了简单的平面图形面积的计算方法,又使学生在头脑中对组合图形产生了感性认识,同时还能激发学生的学习兴趣。】
二、探究新知
(一)组合图形的分割
1、课件展示组合图形,你能一眼就看出它是由哪些图形组成的吗?
让学生回答后总结:为了能够更清楚地看出是由哪些图形组合而成的,可以在原图上画上辅助线(用虚线)。
2、让学生独立分割几个简单的组合图形并交流展示。
【设计意图:为学生能够算出简单的组合图形面积做铺垫,学生用不同的方法分解,体现分法的多样性。】
(二)组合图形的面积
1、小组合作学习。要求:先说一说可以怎么画辅助线,再试着分别用不同的方法来算一算它的.面积,算完后互相检查检查。
2、交流展示。
3、总结提升。
方法:分割法(求和),添补法(求差),渗透转化的思想。图形分割要合理,分得越简洁,解决问题的方法就越简便,还要考虑到已知条件,如果分后已知条件都找不到了,就肯定算不出组合图形的面积。
【设计意图:培养学生认真观察、动脑思考和合作能力,鼓励学生用不同的方法进行计算,开拓思维,并学会根据实际情况选择自己喜欢而又简便的方法进行计算。】
(三)练习巩固
1、计算简单组合图形的面积,独立完成。
2、交流展示。
(四)拓展提升
1、出示问题:如下图,门上有一块边长的正方形玻璃,如果每平方米大约要千克油漆,把这道门漆好,大约要准备多少千克油漆?
2、分析要注意的问题:门上的玻璃不刷漆,要算出刷漆的面积得先算出整个长方形的面积再减去中间小正方形的面积,还要考虑到门的两面都要刷漆。
【设计意图:通过解决实际问题,感受数学知识在生活中的灵活应用,体现了数学“源于生活,用于生活”的教育理念。】
全课解析:
本节课是在学生学习了基本平面图形面积的基础上进行教学的。在教学过程中,体现以学生为主体、教师为主导的教学理念。以充分发挥学生主体地位为主线,以培养学生能力为宗旨展开教学,具体体现以下三点:
一、动手操作,理解概念。
通过学生自己摆一摆,明白什么样的图形是组合图形。通过课件展示,和学生动手分割,使学生感知生活中许多实物的表面都是由几个简单图形组成的,使学生进一步加深对组合图形概念的理解,体现数学知识与现实的联系。
二、探究方法,尝试应用。
以计算简单组合图形的面积为载体,以小组合作学习为方法,引导学生通过观察图形、动脑思考、说一说、分一分、算一算、汇报交流、总结提升等过程,探究出组合图形面积的计算方法,体现重视学生的思维过程;体现算法多样性,为学生提供充分的参与空间;体现对学生思维能力的培养,发展学生的空间观念,提高学生解决问题的能力。
三、灵活应用,培养能力。
紧密联系生活实际,通过算墙面面积和给门刷漆这两个不同层次的问题,提高学生结合生活实际灵活解决问题能力,发展学生的空间观念和多角度思考问题的能力。
【《组合图形的面积》教学设计】相关文章:
组合图形面积的教学设计05-12
组合图形的面积 06-08
《简单组合图形的面积》 03-27
《组合图形面积的计算》 02-23
《组合图形的面积》数学教案11-24
五年级数学教案:《组合图形面积的计算 》06-02
图形的旋转教学设计06-03
《图形的旋转》教学设计09-24
圆的面积教学设计06-13