首页 申请书推荐信华体会电子竞技 通知工作总结华体会体育2串1 策划书工作报告合同演讲稿职业规划
当前位置:98158范文网>教育范文>教学设计>《有理数》教学设计

《有理数》教学设计

时间:2024-10-17 14:00:19 教学设计 我要投稿

《有理数》教学设计

  作为一名教职工,可能需要进行教学设计编写工作,教学设计是实现教学目标的计划性和决策性活动。我们该怎么去写教学设计呢?下面是小编帮大家整理的《有理数》教学设计,欢迎大家分享。

《有理数》教学设计

《有理数》教学设计1

  教学目标:

  1.使学生理解有理数加法的意义,掌握有理数加法法则,能准确地进行有理数的加法运算.

  2.通过有理数加法的教学,体现化归的意识、数形结合和分类的思想方法,培养学生观察、比较和概括的思维能力.

  3.在传授知识、培养能力的同时,注意培养学生勇于探索的精神.教学重点:有理数的加法法则,能准确地进行有理数的加法运算.教学难点:异号两数相加的法则.

  教学程序设计:

  一.类比联想提出问题

  通过引导学生回忆小学算术运算的学习过程,类比联想到在认识了有理数之后,必然要首先学习有理数的加法.

  又通过提问,复习具有相反意义的量和用负数表示的量的实际意义,并通过实际问题,提出质疑导入新课.

  具体问题是:在下列问题中用负数表示量的实际意义是什么?

  (1)某人第一次前进了5米,接着按同一方向又向前进了3米;

  (2)某地气温第一天上升了3°C,第二天上升了-1°C;

  (3)某汽车先向东走4千米,再向东走-2千米。紧接着,回答:

  (1)某人两次一共前进了多少米?

  (2)某地气温两天一共上升了多少度?

  (3)某汽车两次一共向东走了多少千米?

  组织学生展开讨论,在此基础上指出:这三个问题都是求物体两次向同一方向运动的和的问题,同小学一样,可以用加法来做。但是,这些数中出现了负有理数,怎样进行有理数的加法运算呢?引出课题.

  在刚才的教学中,通过复习,加强了铺垫,刻意去引导学生回忆和复习前面学过的有关知识和方法,在旧知识的`复习中找到新知识的生长点。这样,既了解了学生的认知基础,带领学生做好学习新课的知识准备,又使学生认识到本课学习的重要性,引起学生的注意,激发他们的求知个欲望,让每个学生都进行积极的思维参与.

  二.直观演示归纳法则

  用6个实例讲两个有理数相加的问题:

  (1)向东走5米,再向东走3米,两次一共向东走了多少米?

  (2)向西走5米,再向西走3米,两次一共向东走了多少米?

  (3)向东走5米,再向西走5米,两次一共向东走了多少米?

  (4)向东走5米,再向西走3米,两次一共向东走了多少米?

  (5)向东走3米,再向西走5米,两次一共向东走了多少米?

  (6)向西走5米,再向东走0米,两次一共向东走了多少米?

  点拨:“一共”的含义是什么?通过小学的学习知道,就是两个数相加.

  探究:若设向东为正,向西为负,你能写出算式吗?

  (1)(+5)+(+3)=+8;(2)(-5)+(-3)=-8;

  (3)(+5)+(-5)=0;(4)(+5)+(-3)=+2;

  (5)(+3)+(-5)=-2;(6)(-5)+(+0)=-5;

  以上六个问题的设置运用了数学中分类的思想方法,因为两数相加,按符号异同划分为三大类。即:

  这样自然就把问题归结为三种情况:问题(1)和(2)是同号两数相加的情况;

  问题(3)、(4)、(5)是异号两数相加的情况;

  问题(6)有是有一个加数为零的情况.

  这6个问题,都借助于数轴,先规定了向东为正,向西为负,通过电教手段具体演示验证两次运动的结果,由在数轴上表示结果的点所处的方向,确定和的符号,由表示结果的点与原点的距离,确定和的绝对值。引导学生认真观察,积极思考,通过分类、观察,最后师生共同归纳总结出有理数的加法法则.

  有理数的加法法则:

  一般步骤为:

  (1)根据有理数的加法法则确定和的符号;

  (2)根据有理数的加法法则进行绝对值的加减运算.

  前面已经分析过,异号两数相加的法则是学生学习的难点。因此,我抓住突破难点的关键,一是借助于数轴的直观演示,引导学生认真观察、积极思考,自己归纳法则;二是引导学生分析法则特点,总结规律,在此基础上加以记忆,从而使难点化解,并在化解难点的过程中培养学生的思维能力.

  总结出法则之后,可进一步提问:在算术里,两个不都是零的数相加,和一定大于加数,那么,对于两个有理数,相加后和还一定大于加数吗?

  提出问题后,让学生去思考、去分析,最终要让学生明白:在有理数运算中,算术中的某些结论不一定再成立,即对于两个有理数,相加的和不一定大于加数,这是有理数的加法与算术运算的一个很大的区别.

  三.应用迁移巩固提高

  为了解决从掌握知识到运用知识的转化,使知识教学和智能培养结合起来,设计了例题和练习题,选题遵循由浅入深,循序渐进的原则.

  类型:同号、异号、0与一个数相加的三种情况的有理数相加

  例1:计算下列各题:

  (1)(+7)+(+4)

  (2)(-3)+(-9)11

  (3)4+(-4)

  (4)()+(-))23

  (5)(-10.5)+(+1.5)

  (6)(+5)+0

  (7)(-7)+0

  (8)0+(-8)

  分析:先确定符号,在进行绝对值加减运算.

  解:(2)(-3)+(-9) (两个加数同号,用加法法则的第1条计算) =-(3+9) (和取负号,把绝对值相加)

  =-12.

  通过此例,训练学生对法则的理解和直接应用,进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.

  变式题1:填空(口答,并说明理由)

  (1)(-4)+(-7)=____()(2)(+4)+(-7)=_____()

  (3)7+(-4)=_____()(4)4+(-4)=_____()

  (5)9+(-2)=_____()(6)(-9)+2 =_____()

  (7)(-9)+0 =_____()(8)0+(-3)=_____()

  变式题2:今年,我国南方部分地区发生了严重的洪涝灾害。某地水库的水位在某天当中每一次上升了a厘米,第二次上升了b厘米,问:

  (1)两次一共上升了多少厘米?

  (2)计算当a、b为下列各数时的值:

  ① a= 4 , b=3 ② a= -3 , b= 7 ③ a= 5 ,b= -5 ④ a= 4, b= -1 ⑤ a = 3 , b=0

  (3)说出以上运算结果的实际意义

  四. 总结反思拓展升华

  为了使学生对所学知识有一个完整而深刻的印象,利用提问形式,从以下三方面小结。学生先回答,进而教师归纳总结,体现学生为主体,教师为主导的教学思想.

  (1)本节所学习的主要内容有哪些?

  (2)有理数的加法法则在应用时应注意的哪些问题?(确定“和”的符号,计算“和”的绝对值两件事)

  (3)本节课涉及的数学思想方法主要有哪些?五.作业课本第19页练习2、3题.

  补充:

  1.计算:

  (1)(-10)+(+6);

  (2)(+12)+(-4);

  (3)(-5)+(-7);

  (4)(+6)+(+9);

  (5)67+(-73);

  (6)(-84)+(-59);

  (7)33+48;

  (8)(-56)+37.

  2.计算:

  (1)(-0.9)+(-2.7);

  (2)3.8+(-8.4);

  (3)(-0.5)+3;

  (4)3.29+1.78;

  (5)7+(-3.04);

  (6)(-2.9)+(-0.31);

  (7)(-9.18)+6.18;

  (8)4.23+(-6.77);

  (9)(-0.78)+0.

《有理数》教学设计2

  一、教学目标:

  1、认知目标

  正确理解乘方、幂、指数、底数等概念,在现实背景中理解有理数乘方的意义,会进行有理数乘方的运算。

  2、能力目标

  (1).通过对乘方意义的理解,培养学生观察、比较、分析、归纳、概括的能力,渗透转化的数学思想。

  (2).使学生能够灵活地进行乘方运算。

  3、情感目标

  让学生体会数学与生活的密切联系,培养学生灵活处理现实问题的能力。

  二、教学重难点和关键:

  1、教学重点:正确理解乘方的意义,掌握乘方运算法则。

  2、教学难点:正确理解乘方、底数、指数的概念,并合理运算,

  3、教学关键:弄清底数、指数、幂等概念,区分-an与(-a)n的意义。

  三、教学方法

  考虑到七年级学生的认知水平和结构以及思维活动特点,本节课采用多媒体直观教学法,联想比较、发现教学法,设疑思考法,逐步渗透法和师生交流相结合的方法。

  四、教学过程:

  1、创设情境,导入新课:

  这一章我们主要学习了有理数的计算,其实有理数的计算在生活中无处不在。有一种游戏叫“算24点”,它是一种常见的扑克牌游戏,不知道大家有没有玩过?那我们现在约定扑克牌中黑色数字为正,红色数字为负,每次抽取4张,用加、减、乘、除四种运算使结果为24。

  师:假如我现在抽取的是黑3红3黑4红5 (幻灯片放映图片)如何算24?

  师:如果四张都是3呢?

  生答:-3 - 3×3×(-3)=333324

  师:现在老师把扑克牌拿掉一张红3,变成2个黑3,1个红3,大家有办法凑成24吗?

  生:思考几分钟后,有同学会想出33(3)的答案

  师:观察这个式子,有我们以前学过的3次方运算,那它是不是乘法运算?可以告诉大家,它是一种乘方运算,那是不是所有的乘方运算都是乘法运算,它与乘法运算又有怎样的关系?那我们今天就一起来研究“有理数的乘方”,相信学过之后,对你解决心中的疑问会有很大的帮助。(自然引入新课)

  2、动手实践,共同探索乘方的定义

  学生活动:请同学们拿出一张纸进行对折,再对折

  问题:(1)对折一次有几层? 2

  (2)对折二次有几层? 224

  (3)对折三次有几层? 2228

  (4)对折四次有几层? 222216

  师:一直对折下去,你会发现什么?

  生:每一次都是前面的2倍。

  师:请同学们猜想:对折20次有几层?怎样去列式?

  生:20个2相乘

  师:写起来很麻烦,既浪费时间又浪费空间,有没有简单记法?

  简记:22 23 24

  师:请同学们总结对折n次有几层?可以简记为什么?

  2×2×2×2×2

  n个2

  生:可简记为:2n

  aaa?师:猜想:a生:an

  n个a

  师:怎样读呢?生:读作a的n次方

  老师总结:求n个相同因数的积的运算叫乘方;乘方运算的结果叫幂;(教师解说乘方的特殊性),在an中,a

  的因数),n叫做指数(相同因数的个数)。

  注意:乘方是一种运算,幂是乘方运算的结果.看作是的次方的结果时,也可读作的次幂.小试牛刀:

  练习一:把下列各式写成乘方运算的形式:

  6×6×6= (-3) (-3) (-3) (-3)=

  2.1×2.1×2.1×2.1×2.1= 1

  21

  21

  21

  21

  21

  2=

  注意:当底数是负数或分数时,底数一定要加上括弧,这也是辩认底数的方法.练习二、说出下列各式的底数、指数、及其意义

  543431126

  3.学生分小组讨论,总结乘方运算的性质

  师:我们在进行有理数乘法计算的时候,要先确定积的符号,然后再把绝对值相乘。我们知道乘方是一种特殊的乘法运算,那对于乘方运算的结果如何来确定积的符号呢?用幻灯片出示表格,计算后,请同桌之间进行讨论并总结。 (师进行适当的引导,从底数和指数两方面进行考虑)

  教师再对各种情况进行分析总结。

  师生总结:负数的奇次幂是负数,负数的偶次幂是正数,正数的`任何次幂都是正

  数,0的任何正整数次幂都为0。

  4、应用新知,尝试练习:在七年级数学晚会上,有6个同学藏在盾牌后面,男同学的盾牌上写的是一个正数,女同学的盾牌上写的是一个负数,这6个盾牌如下图所示,请算一算,盾牌后面男女生各有多少人?

  (-3)15 ;(-5)8;(-7)6;(-10)25;123;(-16)9

  乘方的运算是本节内容的第二个难点,符号确定后,学生往往容易犯直接拿底数和指数相乘的错误,所以准备了下面的例题,且要求学生写出相应的过程,加深对乘方运算的理解

  例1:计算(教师板演一题后请学生板演)

  (1) 26 (5) 62

  (2) 73

  44(3) (3) (6) 3

  33(4)(4) (7) 4

  比一比:(1)与(5)一样吗?(3)与(6)一样吗?(4)与(7)一样吗?

  小结:一定要先找出底数和指数,确定符号后再去计算。

  例12:计算:(1) 2522,(2)()3,(3),(4),(5)4 53533334

  比一比:(2)与(3)一样吗?(4)与(5)一样吗?

  总结:负数和分数的乘方书写时,一定要把整个负数和分数用小括号括起来。

  5、课外探究

  一张纸厚度为0.05mm,把它连续对折30次后厚度将是珠峰的30倍。试着去计算一下,这句话对不对。

  6、归纳总结,形成体系:

  1、乘方是特殊的乘法运算,所谓特殊就是所乘的因数是相同的;

  特别提醒:底数为负数和分数时,一定要用括号把负数和分数括起来

  2

  3、进行乘方运算应先定符号后计算,要确定符号要先确定底数和指数。

  7、作业布置:习题2.6第1、2题;

《有理数》教学设计3

  一、 教学目标

  1、 知识与技能目标

  掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。

  2、 能力与过程目标

  经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。

  3、 情感与态度目标

  通过学生自己探索出法则,让学生获得成功的喜悦。

  二、 教学重点、难点

  重点:运用有理数乘法法则正确进行计算。

  难点:有理数乘法法则的探索过程,符号法则及对法则的理解。

  三、 教学过程

  1、 创设问题情景,激发学生的求知欲望,导入新课。

  教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?

  学生:26米。

  教师:能写出算式吗?学生:……

  教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题

  2、 小组探索、归纳法则

  (1)教师出示以下问题,学生以组为单位探索。

  以原点为起点,规定向东的方向为正方向,向西的方向为负方向。

  ① 2 ×3

  2看作向东运动2米,×3看作向原方向运动3次。

  结果:向 运动 米

  2 ×3=

  ② -2 ×3

  -2看作向西运动2米,×3看作向原方向运动3次。

  结果:向 运动 米

  -2 ×3=

  ③ 2 ×(-3)

  2看作向东运动2米,×(-3)看作向反方向运动3次。

  结果:向 运动 米

  2 ×(-3)=

  ④ (-2) ×(-3)

  -2看作向西运动2米,×(-3)看作向反方向运动3次。

  结果:向 运动 米

  (-2) ×(-3)=

  (2)学生归纳法则

  ①符号:在上述4个式子中,我们只看符号,有什么规律?

  (+)×(+)=( ) 同号得

  (-)×(+)=( ) 异号得

  (+)×(-)=( ) 异号得

  (-)×(-)=( ) 同号得

  ②积的绝对值等于 。

  ③任何数与零相乘,积仍为 。

  (3)师生共同用文字叙述有理数乘法法则。

  3、 运用法则计算,巩固法则。

  (1)教师按课本P75 例1板书,要求学生述说每一步理由。

  (2)引导学生观察、分析例子中两因数的.关系,得出两个有理数互为倒数,它们的积为 。

  (3)学生做练习,教师评析。

  (4)教师引导学生做例题,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。

《有理数》教学设计4

  今天我说课的题目是“有理数的加法(一)”,“有理数的加法”说课教案、课堂设计及教后反思。本节课选自华东师范大学出版社出版的《义务教育课程标准实验教科书》七年级(上),。这一节课是本册书第二章第六节第一课时的内容。下面我就从以下四个方面一一教材分析、教材处理、教学方法和教学手段、教学过程的设计向大家介绍一下我对本节课的理解与设计。

  一、教材分析

  分析本节课在教材中的地位和作用,以及在分析数学大纲的基础上确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。

  1、有理数的加法在整个知识系统中的地位和作用是很重要的。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。有理数的加法作为有理数的运算的一种,它是有理数运算的重要基础之一,它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、研究函数等内容的学习。

  2、就第二章而言,有理数的加法是本章的一个重点。有理数这一章分为两大部分----有理数的意义和有理数的运算,有理数的意义是有理数运算的基础,有理数的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键是这一节的学习。

  从以上两点不难看出它的地位和作用都是很重要的。

  接下来,介绍本节课的教学目标、重点和难点。(结合微机显示)

  教学大纲是我们确定教学目标,重点和难点的依据。教学大钢规定,在有理数的加法的第一节要使学生理解有理数加法的意义,理解有理数的加法法则,并运用法则进行准确运算。因此根据教学大纲的要求,确定了本节课的教学目标。1、知识目标是:“(1)理解有理数加法的意义;(2)理解并掌握有理数加法的法则;(3)应用有理数加法法则进行准确运算;(4)渗透数形结合的思想。2、能力目标是:(1)培养学生准确运算的能力;(2)培养学生归纳总结知识的能力;3、德育目标是:(1)渗透由特殊到一般的辩证唯物主义思想;(2)培养学生严谨的思维品质。有理数加法的意义与小学学习的在正有理数和零的范围内进行的加法运算的意义相同,让学生理解即可,有理数的加法法则的理解与运用是本节的重点内容。因此本节课的重点是:有理数加法法则的理解与运用。由于本阶段的学生很难把握住事物主要特征:如异号两数、绝对值不相等的异号两数和互为相反数之间的关系,这就对法则的理解造成困难。因此我确定本节课的难,是是;有理数加法法则的理解。

  二、教材处理

  本节课是在前面学习了有理数的`意义的基础上进行的,学生已经很牢固地掌握了正数、负数、数轴、相反数、绝对值等概念,因此我没有把时间过多地放在复习这些旧知识上,而是利用学生的好奇心,采用生动形象的事例,让学生充当指挥官的角色,亲身参加探索发现,从而获取知识。在法则的得出过程中,我引进了现代化的教学工具微机,让学生在微机演示的一种动态变化中自己发现规律归纳总结,这不但增加了课堂的趣味性提高了学生的能力。而且直接地向学生渗透了数形结合的思想。在法则的应用这一环节我又选配了一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的。这些我将在教学过程的设计中具体体现。而且在做练习的过程中让学生互相提问,使课堂在学生的参与下积极有序的进行。

  三、教学方法和数学孚段

  在教学过程中,我注重体现教师的导向作用和学生的主体地位,。本节是新课内容的学习,教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程中在掌握知识同时、发展智力、受到教育。

  四、教学过程的设计。

  1、引入:再课堂的引入上,开始我本打算选择教材上的例子,但是它过于简单。并且不宜于引起学生的注意,所以我选择了学生们感兴趣的军事问题,让学生在充当指挥官的同时,有一种解决问题的成就感,从而使学生积极主动的学习,并且营造了良好的学习氛围。

  2、探索规律:法则的得出重要体现知识的发生,发展,形成过程。我通过了一个小人在坐标轴上来回的移动,使学生在小人的移动过程中体会两个数相加的变化规律。由于采用了形式活泼的教学手段,学生能够全副身心的投入到思考问题中去,让学生亲身参加了探索发现,获取知识和技能的全过程。最后由学生对规律进行归纳总结补充,从而得出有理数的加法法则。

  3、巩固练习:再习题的配备上,我注意了学生的思维是一个循序渐进的过程,所以习题的配备由难而易,使学生在练习的过程中能够逐步的提高能力,得到发展。并且采用男生出题,女生回答;女生出题,男生回答,活跃课堂气氛,充分调动学生的积极性。使学生在一种比较活跃的氛围中,解决各种问题。

  4、归纳总结:归纳总结由学生完成,并且做适当的补充。最后教师对本节的课进行说明。

  以上是我对本节课的理解和设计。希望各位老师批评指正,以达到提高个人教学能力的目的。

  课堂设计及课后反思

  我9月19号在阿城市第五中学上了一堂数学公开课,由于得到通知的时间比较仓促,所以准备的不算充分。在各个方面一定存在着疏漏和缺陷,在这里请大家多多指教。我主要从以下几个方面加以说明。

  一、问题的引入:在问题的引入上。新课标规定应从实际情景入手,并且使学生能够对问题产生强烈的求知欲。我采用了敌军对我军进行小规模军事侦察的问题,使学生处在一个指挥官的角色。对问题提出解决的办法,并且在对学生提出的各种情况,作出实际的操作,使学生明白数学在解决实际问题中的应用。我感觉在问题的引入上问题过于简单,使学生思考的范围过于局限。没有出现比较热烈的学习气氛。所以问题的引入应加大深度,应具有一定的挑战性。

  二、问题的探索:在问题的探索上,我采用了一个小人在坐标轴上来回行走,产生一种动态效果,使学生在充满好奇心的状态下,在老师提供的情景下,在具有较多的时间和空间的条件下,亲身参加探索发现,主动的获取知识和技能。但在整个的实施过程中出现了一些问题,比如:在法则的得出上学生的总结出现了一些问题,我再处理时由于怕时间不够充裕所以学生出现的问题我给作出了解答,其实这里应由学生自己来解决,这样对学生能力的提高非常有帮助。

  三、习题的配备:整个习题的配备大致是按从易到难的顺序排列的,面向全体学生,采用多种形式,使不同层次的学生都有所得,并且采用循序渐进的方法,使学生对加法法则的理解进一步的加强。在讲解完例题后,让学生互相提问,以促使学生积极踊跃的参与到教学活动中来,创造一种轻松的学习氛围。在最后的习题配备上,让学生对两个加数及和之间的关系作出判断,并且对各种情况作出讨论,达到本节课的一个高潮。促使学生的思路得到进一步的加强。但我总体感觉习题的量不够充足,学生的练习机会较少。

  四、总之在整个教学过程的实施中,出现了一些问题,也有一些不尽人意的地方。希望大家批评指正。

《有理数》教学设计5

  一、教学目标

  1、知识与技能

  (1)通过足球赛中的净胜球数,使学生掌握有理数加法法则,并能运用法则进行计算;

  (2)在有理数加法法则的教学过程中,注意培养学生的运算能力。

  2、数学思考

  通过观察,比较,归纳等得出有理数加法法则。

  3、解决问题

  能运用有理数加法法则解决实际问题。

  4、情感与态度

  认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。

  5、重点

  会用有理数加法法则进行运算。

  6、难点

  异号两数相加的法则。

  二、教材分析

  “有理数的加法”是人教版七年级数学上册第一章有理数的第三节内容,本节内容安排四个课时,本课时是本节内容的第一课时,本课设计主要是通过球赛中净胜球数的实例来明确有理数加法的意义,引入有理数加法的法则,为今后学习“有理数的减法”做铺垫。

  三、学校与学生情况分析

  七年级3、4班学生大多数来自农村,学生的基础及学习习惯是比较差。学生对新的课堂教学方法不是很适应;不过,在新的教学理念的指导下,旧的教学方法和学习方法逐步淡化,而是培养学生的观察,比较,归纳及自主探索和合作交流能力。现在,班级中已初步形成合作交流和勇于探究的良好学风,学生间互相评价和师生互动的课堂气氛已逐步形成。

  四、教学过程

  (一)问题与情境

  我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫作净胜球数。章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球。于是红队的.净胜球为

  4+(—2),黄队的净胜球为

  1+(—1)。

  这里用到正数与负数的加法。

  (二)、师生共同探究有理数加法法则

  前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算。这节课我们来研究两个有理数的加法。

  两个有理数相加,有多少种不同的情形?

  为此,我们来看一个大家熟悉的实际问题:

  足球比赛中赢球个数与输球个数是相反意义的量。若我们规定赢球为“正”,输球为“负”,打平为“0”。比如,赢3球记为+3,输1球记为—1。学校足球队在一场比赛中的胜负可能有以下各种不同的情形:

  (1)上半场赢了3球,下半场赢了1球,那么全场共赢了4球。也就是

  (+3)+(+1)=+4。

  (2)上半场输了2球,下半场输了1球,那么全场共输了3球。也就是

  (—2)+(—1)=—3。

  现在,请同学们说出其他可能的情形。

  答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是

  (+3)+(—2)=+1;

  上半场输了3球,下半场赢了2球,全场输了1球,也就是

  (—3)+(+2)=—1;

  上半场赢了3球下半场不输不赢,全场仍赢3球,也就是(+3)+0=+3;

  上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是

  (—2)+0=—2;

  上半场打平,下半场也打平,全场仍是平局,也就是

  0+0=0。

  上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和。但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法。现在请同学们仔细观察比较这7个算式,你能从中发现有理数加法的运算法则吗?也就是结果的符号怎么定?绝对值怎么算?这里,先让学生思考,师生交流,再由学生自己归纳出有理数加法法则:

  1、同号两数相加,取相同的符号,并把绝对值相加;

  2、绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;3。一个数同0相加,仍得这个数。

  (三)、应用举例变式练习

  例1口答下列算式的结果

  (1)(+4)+(+3);(2)(—4)+(—3);(3)(+4)+(—3);(4)(+3)+(—4);

  (5)(+4)+(—4);(6)(—3)+0;(7)0+(+2);(8)0+0。

  学生逐题口答后,师生共同得出

  进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则。进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值。

  例2(教科书的例1)

  解:(1)(—3)+(—9)(两个加数同号,用加法法则的第2条计算)=—(3+9)(和取负号,把绝对值相加)

  =—12。

  (2)(—4。7)+3。9(两个加数异号,用加法法则的第2条计算)=—(4。7—3。9)(和取负号,把大的绝对值减去小的绝对值)=—0。8

  例3(教科书的例2)教师在算出红队的净胜球数后,学生自己算黄队和蓝队的净胜球数

  下面请同学们计算下列各题以及教科书第23页练习第1与第2题

  (1)(—0。9)+(+1。5);(2)(+2。7)+(—3);(3)(—1。1)+(—2。9);

  学生书面练习,四位学生板演,教师巡视指导,学生交流,师生评价。

  (四)、小结

  1、本节课你学到了什么?

  2、本节课你有什么感受?(由学生自己小结)

  (五)练习设计

  1、计算:

  (1)(—10)+(+6);(2)(+12)+(—4);(3)(—5)+(—7);(4)(+6)+(+9);

  (5)67+(—73);(6)(—84)+(—59);(7)33+48;(8)(—56)+37。

  2、计算:

  (1)(—0。9)+(—2。7);(2)3。8+(—8。4);(3)(—0。5)+3;

 3、29+1。78;(5)7+(—3。04);(6)(—2。9)+(—0。31);

  (7)(—9。18)+6。18;(8)4。23+(—6。77);(9)(—0。78)+0。

  4、用“>”或“<”号填空:

  (1)如果a>0,b>0,那么a+b ______0;

  (2)如果a<0,b<0,那么a+b ______0;

  (3)如果a>0,b<0|a|>|b|,那么a+b ______0;

  (4)如果a<0,b>0|a|>|b|,那么a+b ______0。

  五、华体会可以注销账号不

  “有理数的加法”的教学,可以有多种不同的设计方案。大体上可以分为两类:一类是较快地由教师给出法则,用较多的时间(30分钟以上)组织学生练习,以求熟练地掌握法则;另一类是适当加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应地适当压缩应用法则的练习,如本教学设计。现在,试比较这两类教学设计的得失利弊。第一种方案,教学的重点偏重于让学生通过练习,熟悉法则的应用,这种教法近期效果较好。

  第二种方案,注重引导学生参与探索、归纳有理数加法法则的过程,主动获取知识。这样,学生在这节课上不仅学懂了法则,而且能感知到研究数学问题的一些基本方法。

  这种方案减少了应用法则进行计算的练习,所以学生掌握法则的熟练程度可能稍差,这是教学中应当注意的问题。但是,在后续的教学中学生将千万次应用“有理数加法法则”进行计算,故这种缺陷是可以得到弥补的第一种方案削弱了得出结论的“过程”,失去了培养学生观察、比较、归纳能力的一次机会。权衡利弊,我们主张采用第二种教学方法。

《有理数》教学设计6

  教学目标:

  1、在正数,负数及对小学里数的认识的基础上,经历探索有理数范围内的整数,分数的意义的过程,学会通过举例理解相关概念,会区分整数(正整数,零和负整数),分数(正分数和负分数)、

  2、知道整数和分数统称为有理数,初步认识集合、

  新知重难点:

  重点:探索有理数范围内的整数,分数的意义、

  难点:会区分整数(正整数,零和负整数),分数(正分数和负分数)、

  教学过程:

  一、新知生长点(这个环节:新知是建立在哪些已学知识点和相应知识点复习呈现的方法设计)

  1、正数与负数

  请任意写出3个正数,3个负数,并说明正数,负数的区别与联系、

  方式:让学生动手写出后,举手回答、

  强调:0既不是正数,也不是负数、

  2、小学学过的数

  你知道小学学过哪些数

  方式:让学生独立思考动手写出名称,并举例、1分钟后,小组汇总展示、

  讲解:自然数是整数,小数都可以化为分数、

  二、新知探究点(这个环节:新知有哪些需要探究的知识点和相应知识点探究的'方法设计)

  1、整数与分数

  由于负数的加入,现在的整数又指哪些数呢分数又指哪些数呢

  (1)初中里你又学到了哪些数请举例说明、

  (2)你能给小学里的整数(0除外)与分数取个新名吗

  讲解:事实上小学里的数都是0或正数,为区分我们规定:

  正整数:1,2,3,零:0、____

  负整数:—1,—2,____

  正分数:____,____,3、14,____

  负分数:—____,—6、4%,____

  强调:0是整数,不是分数;整数与分数统称为有理数,"统称"是指合起来总的名称的

  意思;到现在为止我们学过的数都是有理数(圆周率π除外)、

  巩固练习:

  ▲Ⅰ同座两生合作(也可以老师说出一些数,让学生判断):一人说名称,一人写相应的数、

  ▲Ⅱ判断题:

  (1)0是整数,不是分数;(2)正数和负数统称为有理数;

  (3)0是最小的有理数;(4)整数和分数统称为有理数;

  (5)自然数一定是正整数;(6)正整数和负整数统称为整数、

  反思:小学学了0,正整数,正分数;初中学了负整数,负分数;

  有理数可分两大类:整数与分数;有理数也可以分三大类正数,0,负数、

  2、集合

  讲解:把一些数放在一起,就组成了一个数的集合,简称"数集",、

  注:这里集合概念只作简单描述,学生明白即可,不要加深、

  集合一般用圆圈或大括号表示,因为集合中的数是无限的,所以要加上省略号、

  巩固练习:教材P10练习、

  三、新知检测点(这个环节:新知有哪些需要当堂检测的知识点和相应的题目的设计)

  会区分整数(正整数,零和负整数),分数(正分数和负分数)、

  1、—20xx不是()

  A、有理数B、自然数c、整数d、负有理数

  2、分别写出满足下列条件的数:

  (1)三个负整数:____,____,____;三个负分数____,____,____ 、

  3、下列说法中正确的是()

  A、 —3、14是负分数,不是有理数B、 0是有理数,不是整数

  c、 0既不是正数,也不是负数d、负整数不是整数

  4、把下列各数分别填在相应的集合内:

  20,—0、08,1,3、14,—2,0,—98,正数集合:{ };负数集合:{ };

  整数集合:{ };分数集合:{ }、

  四,新知拓展点(这个环节:新知有哪些需要拓展的知识点和相应题目的设计)

  非正数非负数的意义:

  1、判断:一个有理数不是正数就是负数()

  零和负数统称为_______,零和正数统称为______、

  2、已知下列各数:—5,+,0、62,4,0,—1、1,—6、4,—7,7、

  其中正整数有,负数有,非负数有、

  感受交集:

  下面两个圈分别表示正数集和整数集,请在每个圈内填人8个数,其中有4个数既是正数,又是整数、这4个数应填在哪里你能说出这两个圈的重叠部分表示什么数的集合吗

  五,回顾小结与布置作业

  通过本课的学习,你有哪些收获

  (1)现在问大家小学学了哪些数你如何回答呢(2)初中有新学了哪些数

  小学学了0,正整数,正分数;初中学了负整数,负分数;整数可分三大类:正整数,0,负整数;分数可分两大类:正分数,负分数;有理数可分两大类:整数与分数、有理数也可以分三大类正数,0,负数、

  作业:(1)复习,预习(要求略);(2)P17习题1、2第1题、

  思考题:

  观察下面依次排列的一列数,它的排列有什么规律请接着写出后面的3个数,你能说出第10个数,第200个数,第201个数是什么吗

  (1)1,—2,3,—4,5,—6,7,—8,____,____,____,____;

  (2)—1,____,____,____

  整数:0,1,2,3,;分数(小数):____,____,3、14,____,整数:____1,____2,;分数:____,—6、4%,分数

  整数

  有理数

  ____

  ____

  ____

  正数集合

  整数集合

《有理数》教学设计7

  有理数的加法运算律及应用

  教材分析:有理数的加法运算律

  【地位作用】

  《有理数的加法运算律》是人教版七年级数学上册第一章《有理数》第三节的内容。本节共计两课时,加法运算律是第二课时的内容,依据教材的安排本节课应是让学生在理解有理数的加法法则的'基础上来运用加法运算律,最终能熟练地进行有理数的加法运算,并能用运算律简化运算。加、减法可以统一成为加法,因此加法的运算是本小节的关键,而加法又是学生初中阶段接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于本一节的学习。

  【教学目标】

  知识与技能

  通过有理数加法运算法则,使学生掌握有理数加法的运算律,并能用有理数加法进行简化运算。

  过程与方法

  培养学生观察能力、归纳能力,通过分类结合思想渗透,提高学生运算能力,尤其是简便计算能力的提高。

  情感态度与价值观

  培养学生把实际问题抽象成数学问题的能力

  【教学重点、难点】

  重点:有理数加法运算律

  难点:灵活运用有理数运算律简便运算

  重难点的突破:

  1、处理好知识之间的联系。适时复习,以旧带新,相互对比。

  2、给出大量具体的例子。让学生亲身经历观察思考、抽象概括、补充完善的过程,从不同的问题情境中抽象出相同的数学模型。

  【学情分析】

  认知:七年级的学生年龄和认知水平还较低,学生爱表现、有较强的好胜心理等特征,因此,在教学过程中善于结合学生的这些特征是上好这节课的关键所在。

  能力:1.学生对正数加正数,正数加零的情况较为熟练,但计算准确率不高。

  2.对异号两数相加确定符号,绝对值大减小掌握不好。

  3.学生善于形象思维,思维活跃,能积极参与讨论。

  【教法与学法】

  教法:以引导法为主,辅之以直观演示法、小组讨论法,向学生提供充分从事数学活动的机会,激发学生的学习主动性,使学生主动参与课堂活动的全过程。

  学法:在学生的学习方式上,采用动手实践,自主探究与合作交流相结合的方式使学习过程直观化、形象化。通过PK赛的形式调动学生的学习热情,从而掌握简便运算的技巧

  【教学过程分析】

  回顾复习,承前启后

  例题讲解,合作学习

  应用练习,巩固新知

  归纳总结,反思提高

  作业布置

《有理数》教学设计8

  地区:云南省-大理-漾濞县

  学校:漾濞县一中初中部

  共1课时

  1.3有理数的加减法初中数学人教20xx课标版

  1教学目标

  1、复习有理数加法法则要点。

  2、经历探索加法运算律的过程,理解有理数的加法法则和运算律。

  3、能熟练进行整数加法运算,并能用运算律简化运算。

  2、学情分析

  我班多数学生的数学基础较好,学习方法恰当。学生对新的课堂教学方法能够适应;不过,在新的教学理念的指导下,旧的教学方法和学习方法已逐步淡化,学生的观察,比较,归纳及自主探索和合作交流能力已逐步形成。现在,班级中已形成合作交流、勇于探究、积极回答问题的良好学风,学生间互相评价和师生互动的课堂气氛也已逐步形成。

  3、重点难点

  1、运用加法运算律简化加法运算。

  2、对加法运算律的理解。

  4、教学过程4.1第一学时教学活动活动1【导入】复习导入

  一、复习有理数加法法则要点

  1、同号两数相加取相同的符号,并把绝对值相加。

  2、异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值。

  3、互为相反数的两数相加得零。

  4、一个数同零相加仍得这个数。

  活动2【讲授】讲授新课

  二、讲授新课

  1、发现、总结:

  (1)提出问题:同学们,在小学,我们学过加法的哪些运算律?

  (2)探讨:以前学习过的加法交换律、结合律现在还适用吗?

  三、有理数运算中,加法交换律和结合律仍适用。

  1、加法交换律:两个数相加,交换加数的位置,和不变。表示成:a+b=b+a

  2、加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

  表示成:(a+b)+c=a+(b+c)

  3、一般地,任意若干个数相加,无论各数相加的先后次序如何,其和不变。

  四、例题讲解

  [例1]计算:

  16+(-25)+24+(-35)

  解:16+(-25)+24+(-35)

  =(16+24)+[(-25)+(-35)]

  =40+(-60)

  =-20

  1、在括号内填写运算律名称

  (-193)+(-215)+(+193)

  =(-193)+(+193)+(-215)

  =[(-193)+(+193)]+(-215)

  =0+(-215)

  =-215

  解题策略:(1)把正数和负数分别结合在一起相加。

  (2)把互为相反数的结合,能凑整的结合。

  (3)把同分母的数结合相加。

  2、例题,10袋小麦称后记录如图所示(单位:千克)10袋小麦一共多少千克?

  解:91,91,91.5,89,91.2,

  91.3,88.7,88.8,91.8,91.1

  如果每袋小麦以90千克为标准,10袋小麦总计超过多少千克或不足多少千克?

  +1,+1,+1.5,-1,+1.2,+1.3,-1.3,-1.2,1.8,+1.1

  1+1+1.5+(-1)+1.2+1.3+(-1.3)+(-1.2)+1.8+1.1

  =5.4

  答:10袋小麦一共905.4千克,总计超过5.4千克。

  活动3【练习】算一算

  1、你想算哪组?

  A(1)(-10)+(-8)=

  (2)(-6)+(+6)=

  (3)(-37)+0=

  B(1)(-843)+(-557)=

  (2)(-3.86)+(+3.86)=

  (3)(-416)+0=

  2、做一做、议一议

  (1)请在下列图案内任意填入一个有理数,要求相同的图案内填相同的数(至少有一个是负数)。

  △+□□+△

  (△+□)+○△+(□+○)

  (2)算出各算式的结果,比较左、右两边算式的结果是否相同呢?

  (3)请同学们说说自己的结果,你发现了什么?

  活动4【测试】交流总结

  这节课你学习了什么内容?你学会了吗?

  1、有理数加法交换律和结合律

  2、运用加法交换律和结合律要注意:

  (1)把正数和负数分别结合在一起相加。

  (2)把互为相反数的结合,能凑整的结合。

  (3)把同分母的数结合相加。

  活动5【作业】拓展练习

  1、-5+7+(-4)+5

  2、-6+(-44)+13+17

  3、-4+17+(-36)+73

  1.3有理数的'加减法

  课时设计课堂实录

  1.3有理数的加减法

  1第一学时教学活动活动1【导入】复习导入

  一、复习有理数加法法则要点

  1、同号两数相加取相同的符号,并把绝对值相加。

  2、异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值。

  3、互为相反数的两数相加得零。

  4、一个数同零相加仍得这个数。

  活动2【讲授】讲授新课

  二、讲授新课

  1、发现、总结:

  (1)提出问题:同学们,在小学,我们学过加法的哪些运算律?

  (2)探讨:以前学习过的加法交换律、结合律现在还适用吗?

  三、有理数运算中,加法交换律和结合律仍适用。

  1、加法交换律:两个数相加,交换加数的位置,和不变。表示成:a+b=b+a

  2、加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

  表示成:(a+b)+c=a+(b+c)

  3、一般地,任意若干个数相加,无论各数相加的先后次序如何,其和不变。

  四、例题讲解

  [例1]计算:

  16+(-25)+24+(-35)

  解:16+(-25)+24+(-35)

  =(16+24)+[(-25)+(-35)]

  =40+(-60)

  =-20

  1、在括号内填写运算律名称

  (-193)+(-215)+(+193)

  =(-193)+(+193)+(-215)

  =[(-193)+(+193)]+(-215)

  =0+(-215)

  =-215

  解题策略:(1)把正数和负数分别结合在一起相加。

  (2)把互为相反数的结合,能凑整的结合。

  (3)把同分母的数结合相加。

  2、例题,10袋小麦称后记录如图所示(单位:千克)10袋小麦一共多少千克?

  解:91,91,91.5,89,91.2,

  91.3,88.7,88.8,91.8,91.1

  如果每袋小麦以90千克为标准,10袋小麦总计超过多少千克或不足多少千克?

  +1,+1,+1.5,-1,+1.2,+1.3,-1.3,-1.2,1.8,+1.1

  1+1+1.5+(-1)+1.2+1.3+(-1.3)+(-1.2)+1.8+1.1

  =5.4

  答:10袋小麦一共905.4千克,总计超过5.4千克。

  活动3【练习】算一算

  1、你想算哪组?

  A(1)(-10)+(-8)=

  (2)(-6)+(+6)=

  (3)(-37)+0=

  B(1)(-843)+(-557)=

  (2)(-3.86)+(+3.86)=

  (3)(-416)+0=

  2、做一做、议一议

  (1)请在下列图案内任意填入一个有理数,要求相同的图案内填相同的数(至少有一个是负数)。

  △+□□+△

  (△+□)+○△+(□+○)

  (2)算出各算式的结果,比较左、右两边算式的结果是否相同呢?

  (3)请同学们说说自己的结果,你发现了什么?

  活动4【测试】交流总结

  这节课你学习了什么内容?你学会了吗?

  1、有理数加法交换律和结合律

  2、运用加法交换律和结合律要注意:

  (1)把正数和负数分别结合在一起相加。

  (2)把互为相反数的结合,能凑整的结合。

  (3)把同分母的数结合相加。

  活动5【作业】拓展练习

  1、-5+7+(-4)+5

  2、-6+(-44)+13+17

  3、-4+17+(-36)+73

  Tags:有理数,加减法,通用,教学设计,一等奖

《有理数》教学设计9

  【教学目标】

  知识技能

  1.通过与温度计的类比,了解数轴的概念,会画数轴。

  2.知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应。

  过程方法

  1.从直观认识到理性认识,从而建立数轴概念。

  2.通过数轴概念的学习,初步体会对应的思想、数形结合的思想方法。

  3.会利用数轴解决有关问题。

  情感态度

  通过对数轴的学习,体会到数形结合的思想方法,进而初步认识事物之间的联系性。

  【教学重点】

  1.数轴的`概念。

  2.能将已知数在数轴上表示出来,说出数轴上已知点所表示的数。

  【教学难点】

  从直观认识到理性认识,从而建立数轴的概念。

  【情景引入】

  1.小明感冒了,医生用体温计测量了他的体温,并说:“37.8度。”

  提疑:医生为什么通过体温计就可以读出任意一个人的体温?

  (体温计上的刻度)

  2.我们再一起去看看12月时祖国各地的自然风光和温度情况(电脑分别显示黑龙江、焦作、海南三个城市美丽的自然风光,温度分别为-1 0°c,0°c,20°c)

  提疑:那么要测量这种气温所需要的温度计的刻度应该如何安排?需要用到哪些数?

  (正数、零、负数)

  3.请尝试画出你想像中的温度计,并和其他同学交流,注意交流时要发表自己的见解。然后提问:请找出一支温度计从外观上具有哪些不可缺少的特征?(组织学生讨论交流)学生可能会从不同的角度回答,教师给予必要的引导,总结出与数轴相对应的特点,如形状是直的、0刻度、单位刻度。(电脑动态演示,将温度计水平放置,抽象得出数轴图形表示有理数-10,0,20的过程)从而引出课题------数轴。

  《有理数的加减混合运算的技巧及应用》同步练习(含答案)

  1、小虫从点O出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬过的路程记录依次为(单位:cm):+5,-3,+10,-8,-7,-10,+12,-2,+1.

  (1)小虫最后是否能回到出发点O?如果不能,它与出发点的位置是怎样的?

  (2)小虫在爬行过程中离出发点最远时在什么位置?(要说明方向和距离)

  (3)在爬行过程中,如果每爬1 cm奖励两粒芝麻,则小虫一共得到了多少粒芝麻?

  《相反数、绝对值的几何意义》同步练习(含答案)

  2、文具店、小明家和书店依次坐落在一条东西走向的大街上,已知文具店位于小明家西边200 m处,书店位于小明家东边100 m处.某天小明从家里出发先去书店购书,然后再去文具店选购学习用品,最后回家学习.

  (1)以小明家为原点,向东为正方向,取适当的长度为单位长度画一条数轴,在数轴上表示文具店和书店的位置;

  (2)用求绝对值的方法计算小明这一天所走的路程.

《有理数》教学设计10

  【教材分析】《有理数的乘方》是人教版七年级上第一章第五节内容,是有理数的一种基本运算,从教材编排结构上,此节内容共3课时,本课为第一课时,是在学生学习了有理数的加、减、乘、除运算后学习的,是有理数乘法的推广和延续,也是后续学习有理数的混合运算、科学计数法和开方及指数幂运算的基础,起到承前启后的作用。通过本节课学习可以让学生发现规律,培养学生的归纳能力,感受化归及分类的数学思想。

  【教学目标】

  1.通过现实背景知道乘方运算与乘法运算的关系,理解有理数乘方的意义;知道底数、指数和幂的概念,会求有理数的正整数指数幂。

  2.培养学生观察、归纳能力;培养学生互相讨论、合作交流的能力;培养学生思考问题、解决问题的能力,切实提高学生的运算能力,培养学生勤思,认真和勇于探索的精神。

  3.感悟数学来源于生活,从而热爱生活;感悟数学符号的简洁美;积极参加数学学习活动,增强自主学习、合作学习意识与习惯。

  【教学重点】正确理解乘方的意义,能利用乘方的运算法则进行有理数 的乘方运算。

  【教学难点】

  1、建立底数、指数、和幂三个概念,并会进行有理数的乘方运算。

  2、有理数乘方运算的符号法则。

  【教具准备】教具准备:多媒体课件一套。

  学具准备:每个学生一张纸。

  【教法分析】基于本节课内容的特点和初一学生的年龄特征,我以“探究式”体验教学法为主进行教学。让学生在开放的情境中,在教师的引导启发下、同学的合作帮助下,通过探究发现,合作交流经历数学知识的形成和应用过程,加深对数学知识的理解。教师着眼于引导,学生着眼于探索,学生的探索发现贯穿始中,整个过程侧重于学生能力的提高、思维的.训练,情感的成功体验。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教

  【学法分析】从自己已有的知识经验出发,自主参与整堂课的知识构建。在各个环节中进行观察、猜想、类比、分析、归纳,以动手实践、自主探索为主,学会合作交流,在师生互动、生生互动中充分调动学习的积极性和主动性,使自己由“学会”变“会学”和“乐学”。

  【学情分析】学生在小学六年级已学习了一个数的平方、立方运算。前面又学习了有理数的乘除法运算,现在所学的有理数乘方,只是在小学所学正数范围扩充到有理数的范围。所以学生在教学活动中能大胆说出自己的体会。在动手,思考和合作交流的过程中,能主动探索,敢干实践,勇于发现。学生间的相互提问的互动的气氛较浓,有良好的学习氛围。

  【教学过程】

  一、创设情境

  问题1、请哪一位吃过兰州拉面的同学说一说拉面的制作过程?(结合学生口述过程)多媒体展示

  制作过程如下图(多媒体展示)

  教师设法引导学生将生活问题用数学的眼光来观察解决。

  引导:

  1、这样经过几扣可拉出64根?128根?

  2、能否用算式表示这种关系?

  这就是我们今天要研究的课题

《有理数》教学设计11

  教学目标

  1.通过实例,了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算。

  2.正确地进行有理数的加法运算;用数结合的思想方法得出有理数加法的法则。并能运用有理数加法解决实际问题。

  3.对学生加强数感的培养,感受数的意义,培养实事求是的科学态度,既会独立思考,又能勇于创新。

  重点难点重点:了解有理数加法的意义,会根据有理数加法进行运算。

  难点:有理数加法中的异号两数的`加法运算。

  教学过程

  教学活动

  师生活动

  设计意图

  一、问题情境

  小明在一条东西的跑道上先走了5m,又走了3m,如果以向东为正,他两次运动后的总结果是什么?

  5+3=8

  如果小明先向西运动5m,再向东运动3m,两次运动的结果是什么?

  (-5)+(-3)=-8

  如果小明先向东运动5m,再向西运动3m,两次运动的结果是什么?

  5+(-3)=2

  足球循球赛中,通常把进球数记为正,失球数记为负数,它们的和叫做净胜球数。

  图中,红队进4个球,失2个球;蓝队进1个球,失1个球,那么红队和蓝队的净胜球数如何表示?

  二、知识点拔:

  有理数加法法则:

  1.同号两数相加,取相同符号,并把绝对值相加。

  2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,与为相反数的两个数相加得0.

  3.一个数同0相加,仍得这个数。

  三、例题指导

  例1 计算

  (1) (-3)+(-9)

  (2) (-4.7)+3.9

  解:(1)(-3)+(-9)=-(3+9)

  =-12

  (2)(-4.7)+3.9=-(4.7-3.9)

  =-0.8

  四、练习巩固:P22 1、2。

  五、小结:

  这节课我们学习了哪些知识?

  六、作业:

  习题1.3 1、8、12题

《有理数》教学设计12

  《有理数的惩罚》教学设计

  一、学情分析:

  1、学生的知识技能基础:学生在小学已经学习过非负有理数的四则运算以及运算律。在本章的前面几节课中,又学习了数轴、相反数、绝对值的有关概念,并掌握了有理数的加减运算法则及其混和运算的方法,学会了由运算解决简单的实际问题,具备了学习有理数乘法的知识技能基础。

  2、学生的活动基础:在相关知识的学习过程中,学生已经历了探索加法运算法则的活动,并且通过观察"水位的变化",运用有理数的加法法则解决了一些实际问题,从而获得了较为丰富的数学活动经验,同时在以前的学习中,学生曾经历了合作学习和探索学习的过程,具有了合作和探索的意识。

  二、教材分析:

  教科书基于学生已掌握了有理数加法、减法运算法则的基础上,提出了本节课的具体学习任务:发现探索有理数的乘法法则,了解倒数的概念,会进行有理数的运算。

  本节课的数学目标是:

  1、经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证能力;

  2、学会进行有理数的乘法运算,掌握确定多个不等于零的有理数相乘的积的符号方法以及有一个数为零积是零的情况:

  三、教学过程设计:

  本节课设计了六个环节:第一环节:问题情境,引入新课;第二环节:探索猜想,发现结论;第三环节:验证明确结论;第四环节:运用巩固,练习提高;第五环节:课堂小结;第六环节:布置作业。

  第一环节:问题情境,引入新课

  问题:(1)观察教科书给出的图片,分析教科书提出的问题,弄清题意,明确已知是什么,所求是什么,让学生讨论思考如何解答。

  (2)如果用正号表示水位上升,用负号表示水位下降,讨论四天后,甲水库水位的变化量的表示法和乙水库水位变化量的表示法。

  设计意图:培养学生从图形语言和文字语言中获取信息的能力,感受用数学知识解决实际问题,体验算法多样化,并从第二种算法中得到算式3+3+3+3=3×4=12(厘米);(-3)+(-3)+(-3)+(-3)=(-3)×4=-12(厘米)从而引出课题:有理数的乘法。

  第二环节:探索猜想,发现结论

  问题:(1)由课题引入中知道:4个-3相加等于-12,可以写成算式

  (-3×4)=-12,那么下列一组算式的结果应该如何计算?请同学们思考:

  (-3)×3=_____;

  (-3)×2=_____;

  (-3)×1=_____;

  (-3)×0=_____。

  (2)当同学们写出结果并说明道理时,让学生通过观察这组算式等号两边的特点去发现积的变化规律,然后再出示一组算式猜想其积的结果:

  (-3)×(-1)=_____;

  (-3)×(-2)=_____;

  (-3)×(-3)=_____;

  (-3)×(-4)=_____。

  教前设计意图:以算式求解和探究问题的形式引导学生逐步深入的观察思考,从负数与非负数相乘的一组算式中发现规律后,猜想负数与负数相乘的积是多少,通过对两组算式的观察,归纳,概括出有理数的乘法法则,并用语言表述之,以培养学生的观察能力,猜想能力,能力和表述能力。

  教后事项:(1)本环节的设计理念是学生通过观察思考,亲身经历感受乘法法则的发现过程,并在合作交流中互相补充,完善结论。但在实际过程中,学生对结论的表述有困难,或者表达不准确,不全面,对于这些问题,不能求全责备,而应循循善诱,顺势引导,帮助学生尽可能简练准确的表述,也不要担心时间不足而代替学生直接表述法则。

  (2)展示两组算式时,注意板书艺术,把算式竖排,并对齐书写,这样易于学生观察特点,发现规律。

  第三环节:验证明确结论

  问题:针对上一环节探究发现的有理数乘法法则:两数相乘,同号得正,异号得负,绝对值相乘,任何数与零相乘,积仍为零。进行验证活动,出示一组算式由学生完成。

  4×(-4)=_____;

  4×(-3)=_____;

  4×(-2)=_____;

  4×(-1)=_____;

  (—4)×0=_____;

  (—4)×1=_____;

  (—4)×2=_____;

  (—4)×(-1)=_____;

  (—4)×(-2)=_____。

  教前设计意图:这个环节的设计一方面是因为它是合情推理的必要环节,另一方面是为了让学生知道从特例归纳得到的结论不一定适合

  一般情况,所以要加以验证和证明它的正确性。同时,验证的过程本身就是对有理数乘法法则的练习和熟悉过程。

  教后反思事项:(1)教科书中没有这个环节的要求,但在教学中应该设计这个环节,确实让学生体验经历验证过程。

  (2)本环节的重点是验证乘法法则的正确性而不是运用乘法法则计算。所以在验证过程中,既要用乘法法则计算,又要加法法则计算,真正体现验证的作用和过程。

  (3)在用乘法法则计算时,要注意其运算步骤与加法运算一样,都是先确定结果的符号,再进行绝对值的运算。另外还应注意:法则中的“同号得正,异号得负”是专指“两数相乘而言的,”不可以运用到加法运算中去。

  第四环节:运用巩固,练习提高

  活动内容:

  (1)1。计算:

  ⑴(-4)×5; ⑵(5-)×(-7);

  ⑶(-3÷8)×(-8÷3);⑷(-3)×(-1÷3);

  (2)2。计算:

  ⑴(-4)×5×(-0。25); ⑵(-3÷5)×(-5÷6)×(-2);

  3。“议一议”:几个有理数相乘,因数都不为零时,积的符号怎样确定?有一个因数为零时,积是多少?

  (4)计算:

  ⑴(-8)×21÷4 ; ⑵4÷5×(-25÷6)×(-7÷10);

  ⑶2÷3×(-5÷4); ⑷(-24÷13)×(-16÷7)×0×4÷3;

  ⑸5÷4×(-1。2)×(-1÷9); ⑹(-3÷7)×(-1÷2)×(-8÷15)。

  教前设计意图:对有理数乘法法则的巩固和运用,练习和提高.

  教后反思事项:(1)学生先自主尝试解决,全班交流,教师点拨要注意格式规范,一开始对每一步运算应注明理由,运算熟练后,可不要求书写每一步的理由;

  (2)例2讲解之后,要启发学生完成"议一议"的内容,鼓励学生通过对例2的运算结果观察分析,用自己的语言表达所发现的.规律,学生有困难时,教师可设置如下一组算式让学生计算后观察发现规律,而不应代替学生完成这个任务。

  (-1)×2×3×4=_____;

  (-1)×(-2)×3×4=_____;

  (-1)×(-2)×(-3)×4=_____;

  (-1)×(-2)×(-3)×(-4)=_____;

  (-1)×(-2)×(-3)×(-4)×0=_____。

  通过对以上算式的计算和观察,学生不难得出结论:多个数相乘,积的符号由负因数的个数,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为零,积就为零。当然这段语言,不需要让学习背诵,只要理解会用即可。

  第五环节:感悟反思课堂小结

  问题

  1.本节课大家学会了什么?

  2.有理数乘法法则如何叙述?”

  3.有理数乘法法则的探索采用了什么方法?

  4.你的困惑是什么

  教前设计意图:培养学生的口头表达能力,提高学生的参与意识。激励学生展示自我。

  教后反思事项:学生小结时,可能会有语言表达障碍或表达不流畅,但只要不影响运算的正确性,则不必强调准确记忆,而应鼓励学生大胆发言,同时教师可用准确的语言适时的加以点拨。

  第六环节:布置作业

  巩固作业:教科书知识技能1、2;问题解决1;联系扩广1

  预习作业;略

  四、华体会可以注销账号不 :

  1、设计条理的问题串,使观察、猜想、验证水到渠成

  2、相信学生的探索能力。本节课的内容适合学生探索,只要教师适当引导,学生具有能力探索出有理数的乘法法则的,不需要教师代替,也不能代替。

  3、合理使用多媒体教学手段可以弥补课堂时间的不足,但绝不能代替必要的板书。

《有理数》教学设计13

  一、教材分析

  有理数的乘法是继有理数的加减法之后的又一种基本运算。它既是有理数运算的深入,又是进一步学习有理数的除法、乘方的基础。对后续知识的学习也是至关重要的。

  二、学情分析

  对于初一学生来说,他们虽已通过学习有理数的加减法具备了初步探究问题的能力,对符号问题也有了一定的认识,但是对知识的主动迁移能力还比较弱,因此,只要引导学生确定了“积”的符号,实质上就是小学算术中数的乘法运算了,突破了有理数乘法的符号法则这个难点,则对于有理数乘法的运算学生就不难掌握了。

  三、教学目标 (核心素养立意)

  1.使学生理解有理数乘法的意义,掌握有理数乘法法则,并能准确地进行有理数的乘法运算。

  2.初步培养学生发现问题、分析问题、和解决问题的能力。

  3.通过教学,渗透化归、分类讨论等数学思想方法,激发学生学习数学、应用数学的兴趣,

  (4)传授知识的同时,注意培养学生良好的学习习惯和勇于探索的精神。

  四、教学重、难点

  重点:有理数的乘法法则。

  难点:有理数乘法的符号法则

  五、教学策略

  我在本节课的教学中采用诱思探究式教学法,并应用多媒体现代教学手段,以学生为主体,通过引导启发、自主探究、点拨归纳完成教学任务,实现教学目标。

  六、教学过程(设计为七个环节)

  (一)复习导入 创设情境

  我首先出示几个相同负数和的计算题,利用乘法的意义很自然地引出负数与正数相乘的新内容,以形成知识的迁移。进而引入本节课题,以问题引领来激发学生求知欲。

  (二)师生互动 探究新知

  要求学生自主学习课本内容,完成课文中的填空。我给与学生充足的时间和空间。 通过自主学习,小组合作,教师点拨引导学生从有理数分为正数、零、负数三类的角度,区分出有理数乘法的情况有五种:(正×正、正×0、正×负、负×0、负×负)引导学生根据以上实例的运算结果,从积的符号和绝对值两方面准确地归纳出有理数的乘法的符号法则和有理数乘法的运算法则。(板书:法则)(确定有理数乘法运算的两步模型:先定符号,在求绝对值)

  这样设计的目的是(1)构造这组有规律的算式让学生通过观察,来发现算式和结果在符号、绝对值方面的.关系,找到乘法结果的符号规律,突破本节课的难点。同时又突出了本节课的教学重点。(2)通过比较、分析、概括、讨论、展示,渗透分类讨论和从特殊归纳一般的数学思想和方法,提高学生整合知识的能力。使学生知道”如何观察”“如何发现规律”。

  (三)分析法则 掌握实质

  (有了以上的认识)通过设置问题4,让学生带着以上的结论,认真观察(—5)×(—3)这个算式,首先确定积的符号(同号得正,先定号),再确定积的绝对值(5×3=15,再求值)。第二小题让学生仿照第一小题填空、解答,理解法则的实质,真正掌握本节课的重点。这样设计是为了再现知识的形成过程,避免单纯的记忆,使学习过程成为一种再创造的过程。

  (四)解决问题 综合运用

  通过习题(小试牛刀)的计算,既巩固了有理数乘法的法则,又明确了倒数的定义,(板书:倒数-乘积是1的两个数互为倒数)。在有理数范围内仍有意义。本环节通过让学生独立思考、分组讨论,完成填空,使学生有效的巩固重点化解难点。

  (五)体验成功 享受快乐

  利用摸牌游戏,抓住学生对竞争充满兴趣的心理特征,激发学生的学习兴趣,用抢答题的形式,使学生的眼、耳、脑、口得到充分的调动,并让学生在抢答中体验成功,享受快乐。通过学生参与活动,调动学生学习的积极性。同时让学生通过本环节进一步理解有理数乘法法则,并在实际问题中进一步培养学生应用数学的意识,体现数学的应用价值。这也是数学核心素养的要求。

  (六)总结收获 畅谈体会

  在课堂临近尾声时,我鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。让学生充分发表自己的感受,并相互补充。 及时有效的回顾小结,进一步明确本节课的主要内容、思想和方法。这样设计的目的是培养学生的归纳能力和语言表达能力,以及善于反思的好习惯。让学生品尝收获的喜悦,坚定今后学习数学的信心。

  (七)布置作业 巩固深化

  七、课后反思

  在课堂教学过程中,我始终坚持以观察为起点,以问题为主线,以能力培养为核心的宗旨;遵照教师为主导,学生为主体,训练为主线的教学原则;遵循由已知到未知、由浅入深、由易到难的认知规律;采用诱思探究教学法,把课堂还给学生,让他们主动去参与,去探究,去分析。通过创设、引导、渗透、归纳等活动让学生在不知不觉中掌握重点,突破难点,发展能力,养成良好的数学学习习惯。更好的促进学生全面、持續、和谐的发展。本节课的设计一定还存在不少的纰漏和缺陷,敬请各位同仁批评指正。谢谢大家!

《有理数》教学设计14

  一、说教材:

  (一)地位和作用

  有理数的加法是小学算术加法运算的拓展,是初中数学运算最重要,最基础的内容之一。熟练掌握有理数的加法运算是学习有理数其它运算的前提,同时,也为后继学习实数、代数式运算、方程、不等式、函数等知识奠定基础。有理数的加法运算是建构在生产、生活实例上,有较强的生活价值,体现了数学来源于实践,又反作用于实践。就本章而言,有理数的加法是本章的重点之一。学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。

  (二)课程目标:

  1、知识与技能目标:

  ⑴了解有理数加法的意义。

  ⑵经历探索有理数加法法则的过程,理解并掌握有理数加法的法则。

  (3)运用有理数加法法则正确进行运算(主要是整数的运算)。

  2、过程与方法目标:

  ⑴在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力。

  (2)在探索过程中感受数形结合和分类讨论的数学思想。

  (3)渗透由特殊到一般的唯物辩证法思想

  3、情感态度与价值观目标:

  (1)通过师生交流、探索,激发学生的学习兴趣、求知欲望,养成良好的数学思维品质。

  (2)让学生体会到数学知识来源于生活、服务于生活,培养学生对数学的热爱,培养学生运用数学的意识。

  (3)培养学生合作意识,体验成功,树立学习自信心。

  (三)教学重点、难点:

  重点:理解和运用有理数的加法法则难点:理解有理数加法法则,尤其是理解异号两数相加的法则

  二、说教法:

  在教学过程中一如既往的开展“新、行、省、信”四字教育模式的教学。新:创设新的问题情境(足球净胜球数)、开展新的学习方式(自主、合作、交流)、进行新的评价体系(个人评价与小组评价相结合);行:在教师的启发引导下自主、合作探究新知(有理数的加法法则),教师关注学生是否积极思考问题(几组有理数加法的符号与绝对值特征)、是否主动参与讨论(同号与异号的特征)、是否敢于发表自己的见解(有理数加法法则的概括);省:在特殊实例的基础上观察、归纳、概括有理数的加法法则,在实例讲解和自主练习的基础上总结心得、反省得失(如:解后思)。信:在本节课的探究法则与运用法则中体验成功,树立学习自信心(如在教师用数带正号球的方法得出(+2)+(+3)= +5后,学生按照此思路可以很快得出(-2)+(-3)等其它情形。又如以口答形式判断几组有理数加法的和的符号和在最后以“挑战老师”的形式判断一句话的正误)。同时本节课在运用“正负抵消”和数轴探讨有理数法则时,教师只对第一个或前两个进行指导和示范,其它的留给学生独立得出或合作完成。另外利用多媒体来辅助教学,使教学内容直观形象化,使学生在比较真实的环境里面体验数学的`生活性。

  三、说学法:

  本节课同号两数相加学生易理解,难点是异号两数相加,所以在教学时要注意以下几点:第一、学生在小学阶段的学习和前面正数、负数、数轴、绝对值的学习为本节课提供了学习的前提;第二、七年级的学生已经初步具备合作和交流的能力,通过探究和合作获得成功基本上可以实现课程目标的;

  第三、范例讲解和随堂练习始终是学以致用的有效方法。范例讲解与随堂练习都是学生强化理解法则、正确运用法则的地方。范例讲解时应引导学生步步说理,随堂练习时应引导学生通过自我反省、小组评价、来克服解题时的错误,有必要教师给与规范矫正。

  四、说教学程序:

  本节课我将“新、行、省、信”四字教育法运用到教学中,教学过程划分为以下几个环节:(简述如下)

  1、引入新知---新(创设新的问题情境)。

  今年恰好举行了世界杯,所以通过足球净胜球问题引入教学,情境活泼、自然。在学生回答(-1)+(+1)=0和(+1)+(-1)=0时渗透“正负抵消”的思想引入讨论整数加法的几种情形。

  2、探究新知---行

  (1)类比小学学习加法的“实物数数法”(1用一个表示,-1用一个表示,那么2就用两个表示的方法)和“正负抵消”法形象直观得出一组有理数加法的结果,教学时除(+2)+(+3)教师示范得出外,其他几例均可学生自主得出,教师在聆听学生讲述自己的方法时及时给与积极的评价。

  (2)联系前面数轴,运用数轴也可以形象得出上述四组数的结果。在教学时要强调加法的“叠加性”,此处学生易出错。如在讲(-2)+(-3)时学生虽然明白-2表示从原点出发往西移动2个单位,但在加上-3时易犯“又从原点出发”的错误,教学时可以采取以下策略:一是先讲点的移动再移动然后用数学式子表示,在此基础上出示其它几个算式,让学生运用点的移动说明运算结果;二是联系孩提时学数数(数手指)的方法进行类比。在此处的教学师应加强引导,在讲完第一个式子的表示过程后其他三个让学生依照刚才教师的方法和思路独立完成,在学生发表见解时师可以让其他学生给出矫正和评价。

  3、得出新知---省

  在前面形象得出结果的基础上教师诱导学生从四个例子中发现一般的结论。教师引导学生观察:问:两个有理数相加,和的符号怎样确定?和的绝对值怎样确定?一个有理数同0相加,和是多少?在引导学生观察前可以让学生小组合作、交流、讨论。教师可以参与到学生当中的讨论中,在讨论中师可诱导学生先看式子的和的符号与两个加数的符号的关系,再诱导学生看和的绝对值与两个加数的绝对值的关系。如果学生有困难,师可引导学生分类:同号类、异号类、相反数类,观察符号与绝对值特征,再请学生发表自己或小组成员的见解。此处应肯定学生朴素的语言特别应表彰有独特见解和说得完备的学生。最后师生一起用比较规范的语言总结有理数加法法则。

  4、运用新知---信

  此处的“信”主要是指在运用法则解决问题时对照法则“步步说理”,从而树立学生学好法则用好法则的信心。特别是异号两数相加时更要着重强调、矫正、理清思路和步骤。然后师生一起“解后思”:在做题时应该注意什么(此处又是“省”),在随堂练习时教师关键是反馈矫正、积极评价,5、联系实际、小小拓展;

  为落实“数学来源于生活、生活处处有数学”的理念,此处可安排两道实际应用题:如:请根据式子(-4)+3举出一个恰当的生活情境;(此例有很多好情境,教师应对举例举得好的学生给与积极评价)。又如:土星表面的夜间平均温度为-150度,白天比夜间高27度,那么白天的平均温度是多少?

  6、教学小结、知识回顾:教师让学生畅所欲言的谈在这节课的得与失、感到困惑和疑难的地方、运用法则的关键和步骤等等。师在学生发言的基础上再提炼。运算时的基本思路:①确定类型、②确定符号、③确定绝对值。

  7、课外作业

  为进一步巩固知识,布置适当作业。教师还可提问供学生课外思考以挑战老师:学习完今天的知识后,老师认为“两个有理数相加,和一定大于其中一个加数”,老师的说法正确吗?请

  聪明的你举例说明。

  同行点评

  潘老师对本节课的设计是比较好的,体现学生是学习的主人,教师是教学活动的组织者,引导者和叁与者。的确,新课程的实施给教师提出了全新的挑战。在新课程中,教学观念的转变和课程意识的建立是首要的,教学不是教“教科书”,而是经由“教科书”来教,新课程给教师留下了广阔的空间,教师在教学中要站在课程标准的角度挖掘教材,把教材内容与学生感兴趣的事物结合起来,寓教于乐,充分调动学生的学习积极性。

  华体会可以注销账号不

  “有理数的加法”的教学,可以有多种不同的设计方案.大体上可以分为两类:一类是较快地由教师给出法则,用较多的时间(30分钟以上)组织学生练习,以求熟练地掌握法则;另一类是适当加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应地适当压缩应用法则的练习,如本教学设计.现在,试比较这两类教学设计的得失利弊.

  第一种方案,教学的重点偏重于让学生通过练习,熟悉法则的应用,这种教法近期效果较好.

  第二种方案,注重引导学生参与探索、归纳有理数加法法则的过程,主动获取知识.这样,学生在这节课上不仅学懂了法则,而且能感知到研究数学问题的一些基本方法.

  这种方案减少了应用法则进行计算的练习,所以学生掌握法则的熟练程度可能稍差,这是教学中应当注意的问题.但是,在后续的教学中学生将千万次应用“有理数加法法则”进行计算,故这种缺陷是可以得到弥补的.第一种方案削弱了得出结论的“过程”,失去了培养学生观察、比较、归纳能力的一次机会.权衡利弊,我们主张采用第二种教学方法。

《有理数》教学设计15

  教学目的:

  1.知识目标 使学生了解了负数产生的背景 ,理解正、负数及零的意义,掌握正、负数的表示方法 ,会用正、负数表示具有相反意义的量。

  2.能力 目标 通过 本节教学,培养学生的想象 能力、理论联系 实际能力、分析解决问题的能力;并向学生渗透"对立统一"、"实践第一"等辩证唯物主义观点;

  3.思想目标 对学生进行爱国主义思想教育;培养学生良好的个性品质和学习习惯。

  教学设计

  本课教材所处位置,是小学所学算术数之后数的范围的第一次扩充,是算术数到有理数的衔接与过渡,并且是以后学习数轴、相反数、绝对值以及有理数运算的基础。

  重点

  正、负数的意义,

  难点

  负数的意义及0的内涵。

  教学方法:

  鉴于初一年级学生的年龄特点 ,他们对概念的理解能力不强,精神不能长时间集中,但思维比较活跃。我决定采取启发式教学法及情感教学,创设问题情境,引导学生主动思考,用大量的实例和生动的语言激发学生学习兴趣,调节学习情绪。并利用计算机和投影胶片辅助教学,增大教学密度。

  教学过程的设计,分为四部分。

  一、创设情境,引入负数;

  二、联系对比,突出重点;

  三、课堂练习,及时反馈;

  四、总结提高,渗透德育。

  在引入部分,我通过介绍数的产生与发展 ,向学生渗透"实践第一"的辩证唯物主义观点:原始社会,从打猎记数开始,首先出现自然数,经过漫长岁月,人们用数"0"表示没有,随着人类 的不断进步,在丈量土地进行分配时,又用小数使测量结果更加准确。使同学们感到,数的第一次发展都是为了满足社会生产与生活的需要。

  随之提问:同学们小学都学过哪些数?

  为了给下节课讲述有理数概念及分类作好铺垫,我把学生们答出的数归类为整数和分数。

  那么小学学过的这些数能否满足社会生产生活及数学自身发展的需要呢?

  为了体现负数是从实践中产生的,我选择了三个学生较熟悉的例子,用计算机显示动画效果 ,采取形象化教学。

  (计算机)比如零上5°C,它比0°C高5°C,可记作5°C,而零下5°C比0°C低5°C,怎么表示呢?珠穆朗玛峰高出海平面8848米,吐鲁番盆地低于海平面155米,怎样表示二者的海拔高度?又如向东走3米与向西走3米、收入50元与支出50元等等。还可以联系抗洪实际,让学生思考怎样用数学来区分高区警戒水位1米与低于警戒水位1米呢?

  通过创设问题情境,激发学生的求知欲望 让不同水平的学生都在教师的引导下进行积极的思维参与,兴致勃勃的参与学习活动,既体现了教师的主导作用,又突出了学生的主体地位,师生共同进入角色。

  以上实例说明,小学学过的那些数不能满足实际需要,而且数的'局限也阻碍了数学自身向前发展。如小学遇到0-2、3-5这类题我们束手无策。以上种种矛盾及不便我们如何解决呢?

  使学生感到数的扩充势在必行,扩充的根源是社会生产生活的需要及数学自身发展的需要。

  既然小学学过的数不能满足需要,我们需要引出新的数。根据同学们的生活经验,零下5°C,比0°C低5°C,那么有没有比0还上的数呢?此时,负数已到了呼之欲出的地步,学生顺利地接受了这一事实,负数自然而然的引出了。

  接下来讲解正、负数的定义及本节课的重点、难点,我采取联系对比的方法,始终不脱离小学所学知识。在给出正、负数的定义时,我采取比较轻松的态度,尽量避免使概念复杂化:小学学过的大于零的数就是正数,负数就是在正数前面加上一个"-"号。让学生觉得数学并不难学。在讲述正、负数的表示法、读法后,强调这里的"+""-"是性质符号,虽然与表示运算符号的加号、减号涵义不同,但又能完全统一,因此形式上是一样的。在学运算时会有更深刻的理解。

  从温度计上观察0°C以上的温度用正数表示,0°C以下的温度用负数表表示,说明正数都大于0,负数都小于0,0是正数与负数的界限。因此,0既不是正数也不是负数。0是非正非负的中性数。对于0的认识,我们小学知道,0表示没有,又知道0的一些性质:0不能作除数、0乘以任何数都得0等。其实,0不仅仅表示没有:比如:0°C并不是没有温度,水位线定为0米并不是没有高度。在实际意义中,0是用来表示基准的数,比如海平面、警戒水位等。因此,0是一个实际存在的数量,它比所有正数都小,又比所有负数都大。当然,0的内涵还很丰富,我们将在以后陆续学到。

  以上对数0表示量的意义的分析,实际上能够帮助学生加深对负数的认识和理解。正数、0、负数的大上关系在学生的头脑中初步形成,也为下一节课讲述有理数分类打下基础。

  在此选取课本练习1让学生口答,巩固对正、负数的认识。并把课本例1作为练习给出。目的是使学生熟悉正、负数的特征,会判断一个数是正数还是负数。

  为了突出正、负数的意义这一重点,就要突出它的实践性。那么,与引入部分呼应,有了负数以后,那些不能解决的问题就迎刃而解了。零上5°C可记作5°C或+5°C,零下5°C可记作-5°C;珠穆朗玛峰海拔8848米,吐鲁番盆地海拔-155米;收入50元记作+50元,支出50元记作-50元等等。同学们观察、正、负数所表示的两个意义正好相反的量,叫做具有相反意义的量。有趣的是,在千世界 中,有上就有下,有升就有降,有收入就有支出,有赢就有亏损。因此,上仍相反意义的量是普遍存在的。正、负数的一个重要应用就是能表示两个具有相反意义的量。为了加深学生对具有相反意义的量的理解,请学生再举一些日常生活中的例子,总结出具有相反意义的量的特征:

  (1)意义相反 (2)同一种量

  并解释相反与相异的区别。比如向东走3米向北走3米就不是具有相反意义的量。并通过以下练习加以巩固。

  由于用负数表示实际问题对学生来说很不习惯,是理解上的难点,如何讲解难点呢?在此要向学生渗透相反意义所隐含的辩证关系。

  "+""-"作为性质符号有着更深层的涵义:

  "+"表示与问题中给出意义的相同意义,

  "-"表示与问题中给出意义的相反意义,

  如:前进+5米,表示真正前进5米,

  前进-5米,表示后退5米,

  那么,后退-5米就表示前进5米。并通过课本例2加以巩固。

  为了加深对正、负数的意义及对具有相反意义的量的理解,我安排了这样一个练习:

  图中所示是一个零件的剖面图。用φ30±0.07表示轴直径的误差范围,说明±0.07的意义。

  因为学生第一次见到这种标注误差的方法,很难回答。我采取铺垫式启发,先讲解;"这是一个直径为30mm的轴,在制作过程中允许产生尺寸上的误差,既可以大些也可以小些,但不许超过一定的范围,如此标准谁能说出它的意义?"这时,学生就会根据正、负数可以表示具有相反意义的量这一特点回答出+0.07表示比30mm大0.07mm,-0.07表示比30mm小0.07mm。这样使学生把正、负数与实际问题联系起来,加深了对正、负数意义内涵的理解。

  接下来是课堂练习。让更多的学生参与进来,通过练习巩固知识发现不足,教师及时得到反馈,检查教学效果,采取相应措施。在练习过程中培养学生养成用所学知识去思考问题,判断问题,解决问题的好习惯。学生的练习分出了梯度,让不同水平的学生都有所提高,有助于贯彻因材施教的教学原则。各组练习在进行中,进行后,都要掌握学生的完成情况,让学生举手,加以统计,及时纠错及再讲解,根据学生的接受情况,调整练习题目的多少与难易。在学生回答问题时,我通过语言、目光、动作给予鼓励与告诉,发挥评价的增益效应。

  在整个教学过程中,教师的一言一行、语气、神态都会对学生的学习过程产生影响。因此,教师要对学生在听课过程中通过有形的精神状态如眼神等所表现出来的无形思维状态加以感知,随时捕捉反馈信息,对自己的讲课进程作出相应的调整,快、慢、停、转应用自如。

  在本节课的小结部分,首先小结本课重点与难点,然后向学生提问:你知道是哪个国家最早使用负数吗?负数最早记载于中国的《九章算术》中,比国外早一千多年。借此向学生进行爱国主义思想教育。并布置思考题及作业,目的是把正、负数与第一章所学代数式联系起来,加深对正、负数的意义的理解。

  通过教学实践取得了良好的效果,使我认识到教师在教学过程中,不仅要教会学生知识,还要培养学生良好的数学素养的学习习惯,更要重视教学生做人,才能真正讲出一堂好课,真正成为一名好教师。

【《有理数》教学设计】相关文章:

《有理数的加法》教学设计09-12

有理数的乘法教学设计06-17

初中数学有理数教学设计04-22

有理数华体会可以注销账号不 06-06

《有理数》华体会可以注销账号不 04-13

有理数乘方华体会可以注销账号不 04-22

《有理数的乘法》华体会可以注销账号不 04-22

有理数的乘法华体会可以注销账号不 03-23

有理数乘方的华体会可以注销账号不 04-22

有理数加法华体会可以注销账号不 11-03

Baidu
map