高中数学的教学设计
在教学工作者实际的教学活动中,很有必要精心设计一份教学设计,借助教学设计可以让教学工作更加有效地进行。我们该怎么去写教学设计呢?下面是小编整理的高中数学的教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。
高中数学的教学设计1
教学准备
教学目标
解三角形及应用举例
教学重难点
解三角形及应用举例
教学过程
一、基础知识精讲
掌握三角形有关的定理
利用正弦定理,可以解决以下两类问题:
(1)已知两角和任一边,求其他两边和一角;
(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);利用余弦定理,可以解决以下两类问题:
(1)已知三边,求三角;
(2)已知两边和它们的'夹角,求第三边和其他两角。
掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形中的三角函数问题、
二、问题讨论
思维点拨:已知两边和其中一边的对角解三角形问题,用正弦定理解,但需注意解的情况的讨论、
思维点拨:三角形中的三角变换,应灵活运用正、余弦定理、在求值时,要利用三角函数的有关性质、
例6:在某海滨城市附近海面有一台风,据检测,当前台风中心位于城市O(如图)的东偏南方向300 km的海面P处,并以20 km / h的速度向西偏北的方向移动,台风侵袭的范围为圆形区域,当前半径为60 km,并以10 km / h的速度不断增加,问几小时后该城市开始受到台风的侵袭。
一、 小结:
1、利用正弦定理,可以解决以下两类问题:
(1)已知两角和任一边,求其他两边和一角;
(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);
2、利用余弦定理,可以解决以下两类问题:
(1)已知三边,求三角;
(2)已知两边和它们的夹角,求第三边和其他两角。
3、边角互化是解三角形问题常用的手段、
三、作业:P80闯关训练
高中数学的教学设计2
函数的奇偶性是函数的重要性质,是对函数概念的深化。它把自变量取相反数时函数值间的关系定量地联系在一起,反映在图像上为:偶函数的图像关于y轴对称,奇函数的图像关于坐标原点成中心对称。这样,就从数、形两个角度对函数的奇偶性进行了定量和定性的分析。
教材首先通过对具体函数的图像及函数值对应表归纳和抽象,概括出了函数奇偶性的准确定义。然后,为深化对概念的理解,举出了奇函数、偶函数、既是奇函数又是偶函数的函数和非奇非偶函数的实例。最后,为加强前后联系,从各个角度研究函数的性质,讲清了奇偶性和单调性的联系。这节课的重点是函数奇偶性的定义,难点是根据定义判断函数的奇偶性。
教学目标
1、通过具体函数,让学生经历奇函数、偶函数定义的讨论,体验数学概念的建立过程,培养其抽象的概括能力。
2、理解、掌握函数奇偶性的定义,奇函数和偶函数图像的特征,并能初步应用定义判断一些简单函数的奇偶性。
3、在经历概念形成的`过程中,培养学生归纳、抽象概括能力,体验数学既是抽象的又是具体的。
任务分析
这节内容学生在初中虽没学过,但已经学习过具有奇偶性的具体的函数:正比例函数y=kx,反比例函数 ,k≠0,二次函数y=ax,a≠0,故可在此基础上,引入奇、偶函数的概念,以便于学生理解。在引入概念时始终结合具体函数的图像,以增加直观性,这样更符合学生的认知规律,同时为阐述奇、偶函数的几何特征埋下了伏笔。
对于概念可从代数特征与几何特征两个角度去分析,让学生理解:奇函数、偶函数的定义域是关于原点对称的非空数集;对于在有定义的奇函数y=fx,一定有f0=0既是奇函数,又是偶函数的函数有fx=0,x∈R在此基础上,让学生了解:奇函数、偶函数的矛盾概念———非奇非偶函数。关于单调性与奇偶性关系,引导学生拓展延伸,可以取得理想效果。
教学设计
一、问题情景
1、观察如下两图,思考并讨论以下问题:
(1)这两个函数图像有什么共同特征?
(2)相应的两个函数值对应表是如何体现这些特征的?
可以看到两个函数的图像都关于y轴对称。
从函数值对应表可以看到,当自变量x取一对相反数时,相应的两个函数值相同。
对于函数fx=x,有f3=9=f3,f2=4=f2,f1=1=f1。事实上,对于R内任意的一个x,都有fx=x2=x2=fx。此时,称函数y=x2为偶函数。
2、观察函数fx=x和fx= 的图像,并完成下面的两个函数值对应表,然后说出这两个函数有什么共同特征。
可以看到两个函数的图像都关于原点对称。函数图像的这个特征,反映在解析式上就是:当自变量x取一对相反数时,相应的函数值fx也是一对相反数,即对任一x∈R都有fx=fx。此时,称函数y=fx为奇函数。
二、建立模型
由上面的分析讨论引导学生建立奇函数、偶函数的定义
1奇、偶函数的定义
如果对于函数fx的定义域内任意一个x,都有fx=fx,那么函数fx就叫作奇函数。如果对于函数fx的定义域内任意一个x,都有fx=fx,那么函数fx就叫作偶函数。
2、提出问题,组织学生讨论
(1)如果定义在R上的函数fx满足f2=f2,那么fx是偶函数吗? fx不一定是偶函数
(2)奇、偶函数的图像有什么特征?
(奇、偶函数的图像分别关于原点、y轴对称)
3奇、偶函数的定义域有什么特征? (奇、偶函数的定义域关于原点对称)
三、解释应用
[例 题]
1、判断下列函数的奇偶性。
注:①规范解题格式;
②对于5要注意定义域x∈1,1]。
2、已知:定义在R上的函数fx是奇函数,当x>0时,fx=x1+x,求fx的表达式。
解:1任取x<0,则x>0,∴fx=x1x,
而fx是奇函数,∴fx=fx。∴fx=x1x。
(2)当x=0时,f0=f0,∴f0=f0,故f0=0
3、已知:函数f(x是偶函数,且在∞,0上是减函数,判断fx在0,+∞)上是增函数,还是减函数,并证明你的结论。
解:先结合图像特征:偶函数的图像关于y轴对称,猜想f(x在0,+∞)上是增函数,
证明如下:
任取x1>x2>0,则x1 ∵fx在∞,0上是减函数,∴fx1>fx2。 又fx是偶函数,∴fx1>fx2。 ∴f(x在0,+∞)上是增函数。 思考:奇函数或偶函数在关于原点对称的两个区间上的单调性有何关系? [练 习] 1、已知:函数fx是奇函数,在[a,b]上是增函数b>a>0,问fx在[b,a]上的单调性如何。 2fx=x3|x|的大致图像可能是 3、函数fx=ax2+bx+c,a,b,c∈R,当a,b,c满足什么条件时,1函数fx是偶函数。2函数fx是奇函数。 4设fx,gx分别是R上的奇函数和偶函数,并且fx+gx=xx+1,求fx,gx的解析式。 四、拓展延伸 1、有既是奇函数,又是偶函数的函数吗?若有,有多少个? 2设fx,gx分别是R上的奇函数,偶函数,试研究: 1Fx=fx·gx的奇偶性。 2Gx=|fx|+gx的奇偶性。 3、已知a∈R,fx=a ,试确定a的值,使fx是奇函数。 4、一个定义在R上的函数,是否都可以表示为一个奇函数与一个偶函数的和的形式? 从兴趣入手,培养学生自主学习的良好习惯 兴趣是学生最好的老师,自主学习的愿望和强烈的求知欲来源于对数学学习的兴趣,兴趣是推动学生学习的直接动力。我针对小学生对数学枯燥乏味这一状况,采用编故事、猜谜语、以植树、养鸡为场境来创设情境,激发学生的学习兴趣。给学生讲数学家祖冲之的故事,介绍“十”、“一”、“X”、“÷”号的来历,为什么出现汉字和阿拉伯字,设计一些贴近生活而又富于挑战性的数学问题,让学生对数学产生兴趣,并逐步培养学生用意志力克服困难、尝试成功。每当学生取得点滴进步,我总是夸奖他们,鼓励他们,使学生增强自信心和自豪感,从而激发学生的求知欲和学习数学的兴趣。学生对学习有了兴趣,他们将主动的参与学习,自觉的学习。 培养学生课前预习的良好习惯 数学知识具有较强的逻辑性,除了课后复习,更有必要进行课前预习。从小学一年级开始,我就对引导学生预习数学:首先估计下堂课要学习的内容(老师事先给学生提出预习要求),该部分内容包含哪些例题和习题,让学生读例题;第二步就是自学例题,自己在练习本上做,然后对照检查,看看是否做对了,或许方法与教材不一样,但自己又认为是对的,在课堂上可以向老师提出新的解答方法;如果有哪些地方弄不懂,在本子上做好笔记,到课堂上提出来交流,共同解决;第三步对照例题做习题,能做的和不能做都做上记号,等合作学习的时候一并解决。不可否认,一个班肯定有部分学习困难的学生完不成预习任务,我总是以饱满的'热情去关心他们,帮助他们消除心理障碍,对他们进行耐心细致的辅导,尽可能让每个学生都获得成功感,他们自然就会对数学产生兴趣。 培养学生合作交流学习的良好学习习惯 在课堂上,我不再单一的传授知识,而是组织学生合作学习,把学生四人分成一个组,好、中、差进行搭配,并选一名学习能力较强、责任心较强的学生当组长,让学生在小组讨论、交流中合作学习,组长记下结果,有新的方法和更简捷的方法由组长向全班同学交流。每个学生必须掌握一种自己喜欢的方法。(如:在学习8十6时,教材是把8看作10,10十6=16,16-2=14;而班上的于海静同学直接把8看作10,把6看作4,10十4=14)同学之间相互交流,我在巡回检查中发现有叙述不完整的、表达不清楚的加以帮助指导,对普遍存在的问题我才集中讲解,远比过去单一的讲解学生更容易接受。 【教学目的】 (1)使学生初步理解集合的概念,知道常用数集的概念及记法。 (2)使学生初步了解“属于”关系的意义。 (3)使学生初步了解有限集、无限集、空集的意义。 【重点难点】 教学重点:集合的基本概念及表示方法。 教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合。 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 【内容分析】 1、集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础。 把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑。 本节首先从初中代数与几何涉及的'集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子。 这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念。 集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明。 【教学过程】 一、复习引入: 1、简介数集的发展,复习最大公约数和最小公倍数,质数与和数; 2、教材中的章头引言; 3、集合论的创始人——康托尔(德国数学家)(见附录); 4、“物以类聚”,“人以群分”; 5、教材中例子(P4) 二、讲解新课: 阅读教材第一部分,问题如下: (1)有那些概念?是如何定义的? (2)有那些符号?是如何表示的? (3)集合中元素的特性是什么? (一)集合的有关概念: 由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集、集合中的每个对象叫做这个集合的元素。 定义:一般地,某些指定的对象集在一起就成为一个集合。 1、集合的概念 (1)集合:某些指定的对象集在一起就形成一个集合(简称集) (2)元素:集合中每个对象叫做这个集合的元素 2、常用数集及记法 (1)非负整数集(自然数集):全体非负整数的集合记作N,(2)正整数集:非负整数集内排除0的集记作N__或N+ (3)整数集:全体整数的集合记作Z ,(4)有理数集:全体有理数的集合记作Q ,(5)实数集:全体实数的集合记作R 注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0 (2)非负整数集内排除0的集记作N__或N+ Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z__ 3、元素对于集合的隶属关系 (1)属于:如果a是集合A的元素,就说a属于A,记作a∈A (2)不属于:如果a不是集合A的元素,就说a不属于A,记作 4、集合中元素的特性 (1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可 (2)互异性:集合中的元素没有重复 (3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出) 5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q…… ⑵“∈”的开口方向,不能把a∈A颠倒过来写 三、练习题: 1、教材P5练习1、2 2、下列各组对象能确定一个集合吗? (1)所有很大的实数(不确定) (2)好心的人(不确定) (3)1,2,2,3,4,5、(有重复) 3、设a,b是非零实数,那么可能取的值组成集合的元素是_-2,0,2__ 4、由实数x,-x,|x|,所组成的集合,最多含( A ) (A)2个元素(B)3个元素(C)4个元素(D)5个元素 5、设集合G中的元素是所有形如a+b (a∈Z, b∈Z)的数,求证: (1)当x∈N时, x∈G; (2)若x∈G,y∈G,则x+y∈G,而不一定属于集合G 证明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0,则x= x+0__ = a+b ∈G,即x∈G 证明(2):∵x∈G,y∈G,∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z) ∴x+y=( a+b )+( c+d )=(a+c)+(b+d) ∵a∈Z, b∈Z,c∈Z, d∈Z ∴(a+c) ∈Z, (b+d) ∈Z ∴x+y =(a+c)+(b+d) ∈G,又∵ =且不一定都是整数,∴ =不一定属于集合G 一、课题: 人教版全日制普通高级中学教科书数学第一册(上)《2.7对数》 二、指导思想与理论依据: 《数学课程标准》指出:高中数学课程应讲清一些基本内容的实际背景和应用价值,开展“数学建模”的学习活动,把数学的应用自然地融合在平常的教学中。任何一个数学概念的引入,总有它的现实或数学理论发展的需要。都应强调它的现实背景、数学理论发展背景或数学发展历史上的背景,这样才能使教学内容显得自然和亲切,让学生感到知识的发展水到渠成而不是强加于人,从而有利于学生认识数学内容的实际背景和应用的价值。在教学设计时,既要关注学生在数学情感态度和科学价值观方面的发展,也要帮助学生理解和掌握数学基础知识和基本技能,发展能力。在课程实施中,应结合教学内容介绍一些对数学发展起重大作用的历史事件和人物,用以反映数学在人类社会进步、人类文化建设中的作用,同时反映社会发展对数学发展的促进作用。 三、教材分析: 本节内容主要学习对数的概念及其对数式与指数式的互化。它属于函数领域的知识。而对数的概念是对数函数部分教学中的核心概念之一,而函数的思想方法贯穿在高中数学教学的始终。通过对数的学习,可以解决数学中知道底数和幂值求指数的问题,以及对数函数的.相关问题。 四、学情分析: 在ab=N(a>0,a≠1)中,知道底数和指数可以求幂值,那么知道底数和幂值如何求求指数,从学生认知的角度自然就产生了这样的需要。因此,在前面学习指数的基础上学习对数的概念是水到渠成的事。 五、教学目标: (一)教学知识点: 1.对数的概念。 2.对数式与指数式的互化。 (二)能力目标: 1.理解对数的概念。 2.能够进行对数式与指数式的互化。 (三)德育渗透目标: 1.认识事物之间的相互联系与相互转化, 2.用联系的观点看问题。 六、教学重点与难点: 重点是对数定义,难点是对数概念的理解。 七、教学方法: 讲练结合法八、教学流程: 问题情景(复习引入)——实例分析、形成概念(导入新课)——深刻认识概念(对数式与指数式的互化)——变式分析、深化认识(对数的性质、对数恒等式,介绍自然对数及常用对数)——练习小结、形成反思(例题,小结) 八、
: 对本节内容在进行教学设计之前,本人反复阅读了课程标准和教材,教材内容的处理收到了一定的预期效果,尤其是练习的处理,充分发挥了学生的主体作用,也提高了学生主体的合作意识,达到了设计中所预想的目标。然而还有一些缺憾:对本节内容,难度不高,本人认为,教师的干预(讲解)还是太多。在以后的教学中,对于一些较简单的内容,应放手让学生多一些探究与合作。随着教育改革的深化,教学理念、教学模式、教学内容等教学因素,都在不断更新,作为数学教师要更新教学观念,从学生的全面发展来设计课堂教学,关注学生个性和潜能的发展,使教学过程更加切合《课程标准》的要求。 对于本教学设计,时间仓促,不足之处在所难免,期待与各位同仁交流。 教学准备 教学目标 掌握三角函数模型应用基本步骤: (1)根据图象建立解析式; (2)根据解析式作出图象; (3)将实际问题抽象为与三角函数有关的简单函数模型。 教学重难点 利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型。 教学过程 一、练习讲解:《习案》作业十三的第3、4题 3、一根为Lcm的线,一端固定,另一端悬挂一个小球,组成一个单摆,小球摆动时,离开平衡位置的位移s(单位:cm)与时间t(单位:s)的函数关系是 (1)求小球摆动的周期和频率;(2)已知g=24500px/s2,要使小球摆动的周期恰好是1秒,线的长度l应当是多少? (1)选用一个函数来近似描述这个港口的水深与时间的函数关系,并给出整点时的水深的近似数值 (精确到0、001)。 (2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1、5米的安全间隙(船底与洋底的'距离),该船何时能进入港口?在港口能呆多久? (3)若某船的吃水深度为4米,安全间隙为1、5米,该船在2:00开始卸货,吃水深度以每小时0、3 米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域? 本题的解答中,给出货船的进、出港时间,一方面要注意利用周期性以及问题的条件,另一方面还要注意考虑实际意义。关于课本第64页的“思考”问题,实际上,在货船的安全水深正好与港口水深相等时停止卸货将船驶向较深的水域是不行的,因为这样不能保证船有足够的时间发动螺旋桨。 练习:教材P65面3题 三、小结:1、三角函数模型应用基本步骤: (1)根据图象建立解析式; (2)根据解析式作出图象; (3)将实际问题抽象为与三角函数有关的简单函数模型。 2、利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型。 四、作业《习案》作业十四及十五。 提出问题: 新课程认为知识不是单方面通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(教师指导和同学的帮助)协作,主动建构而获得的。它强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。通过多年教学实践和对新课程的认识,我认为若遵循这个原则进行数学课堂教学,学生的学习将是一种高效的活动。 教材中的地位: 本节内容是在指数范围扩充到实数的基础上引入指数函数的,而指数函数是高中研究的第一种具体函数。是在初中已经初步探讨了正比例函数,反比例函数,一次函数,二次函数的图像和性质的基础上,在进一步学习了函数的概念及有关性质的前提下,去研究学习的。重点是指数函数的图像及性质,难点在于弄清楚底数a对于函数变化的影响。这节课主要是学生利用描点法画出函数的图像,并描述出函数的图像特征,从而指出函数的性质。使学生从形到数的熟悉,体验研究函数的过程与思路,实现意识的深化。 设计背景: 在新教材的教学中,我慢慢体会到新教材渗透的、螺旋式上升的基本理念,知识点的形成过程经历从具体的实例引入,形成概念,再次运用于实际问题或具体数学问题的过程,它的应用性,实用性更明显的.体现出来。学数学重在培养学生的思维品质,经过多年的数学学习,学生还是害怕学数学,尤其高中的数学,它对于学生来说显得很抽象。所以如果再让让学生感到数学离我们的生活太远,那么将很难激发他们的学习爱好。所以在教学中我尽力抓住知识的本质,以实际问题引入新知识。另外,就本章来说,指数函数是学习函数概念及基本性质之后研究的第一个重要的函数,让学生学会研究一个新的具体函数的方法比学会本身的知识更重要。在这个过程中,所有的知识都是生疏的,在大脑中没有形成基本的框架结构,需要老师的引导,使他们逐渐建立。数学中任何知识的形成都体现出它的思想与方法,因而授课中注重让学生领悟其中的思想,运用其中的方法去学习新的知识,是非常重要的。 教学目标: 一、知识: 理解指数函数的定义,能初步把握指数函数的图像,性质及其简单应用。 二、过程与方法: 由实例引入指数函数的概念,利用描点作图的方法做出指数函数的图像,(有条件的话借助计算机演示验证指数函数图像)由图像研究指数函数的性质。利用性质解决实际问题。 三、能力: 1、通过指数函数的图像和性质的研究,培养学生观察,分析和归纳的能力,进一步体会数形结合的思想方法。 2、通过对指数函数的研究,使学生能把握函数研究的基本方法。 教学过程: 由实际问题引入: 问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,?1个这样的细胞分裂x次后,得到的细胞的个数y与x之间的关系是什么? 分裂次数与细胞个数 1,2;2,2×2=22;3,2×2×2=23;????;x,2×2×……×2=2x 归纳:y=2x 问题2:某种放射性物质不断变化为其它物质,每经过1年剩留的这种物质是原来的84%,那么经过x年后剩留量y与x的关系是什么? 经过1年,剩留量y=1×84%=;经过2年,剩留量y=×=?经过x年,剩留量y= 寻找异同: 你能从以上的两个例子中得到的关系式里找到什么异同点吗? 共同点:变量x与y构成函数关系式,是指数的形式,自变量在指数位置,底数是常数;不同点:底数的取值不同。 那么,今天我们来学习新的一个基本函数:指数函数 得到指数函数的定义:定义:形如y=ax(a>0且a≠1)的函数叫做指数函数。 在以前我们学过的函数中,一次函数用形如y=kx+b(k≠0)的形式表示,反比例函数用形如y=k/x(k≠0)表示,二次函数y=ax2+bx+c(a≠0)表示。对于其一 般形式上的系数都有相应的限制。问:为什么指数函数对底数有这样的要求呢?若a=0,当x>0时,恒等于0,没有研究价值;当x≤0时,无意义。 若a 若a=1,则=1,是一个常量,也没有研究的必要。 所以有规定且a>0且a≠1。 由定义,我们可以对指数函数有一初步熟悉。 进一步理解函数的定义: 指数函数的定义域:在我们学过的指数运算中,指数可以是有理数,当指数是无理数时,也是一个确定的实数,对于无理数,学过的有理指数幂的性质和运算法则都适用,所以指数函数的定义域为R。 研究函数的途径:由函数的图像的性质,从形与数两方面研究。 学习函数的一个很重要的目标就是应用,那么首先要对函数作一研究,研究函数的图像及性质,然后利用其图像性质去解决数学问题和实际问题。根据以往的经验,你会从那几个角度考虑?(图像的分布范围,图像的变化趋势)图像的分布情况与函数的'定义域,值域有关,函数的变化趋势体现函数的单调性。引导学生从定义域,值域,单调性,奇偶性,与坐标轴的交点情况着手开始。 首先我们做出指数函数的图像,我们研究一般性的事物,常用的方法是:由特殊到一般。 我们以具体函数入手,让学生以小组形式取不同底数的指数函数画它们的图像,将学生画的函数图像展示,(画函数的图像的步骤是:列表,描点,连线。)。最后,老师在黑板(电脑)上演示列表,描点,连线的过程,并且,画出取不同的值时,函数的图像。 要求学生描述出指数函数图像的特征,并试着描述出性质。 数学发展的历史表明,每一个重要的数学概念的形成和发展,其中都有丰富的经历,新课程较好的体现了这点。对新课程背景下的学生而言,数学的知识应该是一个数学化的过程,即通过对常识材料进行细致的观察、思考,借助于分析、比较、综合、抽象、概括等思维活动,对常识材料进行去粗取精、去伪存真的精加工。该案例正是从数学研究和数学实验的过程中进行设计。虽然学生的思维不一定真实的重演了人类对数学知识探索的全过程,但确确实实通过实验、观察、比较、分析、归纳、抽象、概括等思维活动,在探索中将数学数学化,从而才使学生对数学学习产生了乐趣,对数学的研究方法有了一定的了解。 虽然学生要学的数学是历史上前人已建构好了的,但对他们而言,仍是全新的、未知的,需要用他们自己的学习活动来再现类似的过程。该案例正是从创设问题情景作为教学设计的重要的内容之一。教师应该把教学设计成学生动手操作、观察猜想、揭示规律等一系列过程,侧重于学生的探索、分析与思考,侧重于过程的探究及在此过程中所形成的一般数学能力。 教师的地位应由主导者转变为引导者,使教学活动真正成为学生的活动。在教学过程中,把学习的主动权交给学生,在时间和空间上保证学生在教师的指导下,学生能自己独立自主的探究学习。使教学活动始终处于学生的“最近发展区”,使每一个学生通过自己的努力,在自己原有的基础上都有所获,都有提高。总之,通过案例研究,不断研究新教材、新理念,不断调整教学策略优化课堂教学,培养学生探究学习与创新学习能力将是我们在数学教学中要继续探究的课题。 一、教学目标 1、在初中学过原命题、逆命题知识的基础上,初步理解四种命题。 2、给一个比较简单的命题(原命题),可以写出它的逆命题、否命题和逆否命题。 3、通过对四种命题之间关系的学习,培养学生逻辑推理能力 4、初步培养学生反证法的数学思维。 二、教学分析 重点:四种命题;难点:四种命题的关系 1。本小节首先从初中数学的命题知识,给出四种命题的概念,接着,讲述四种命题的关系,最后,在初中的基础上,结合四种命题的知识,进一步讲解反证法。 2。教学时,要注意控制教学要求。本小节的内容,只涉及比较简单的命题,不研究含有逻辑联结词“或”、“且”、“非”的命题的逆命题、否命题和逆否命题, 3.“若p则q”形式的命题,也是一种复合命题,并且,其中的p与q,可以是命题也可以是开语句,例如,命题“若,则x,y全为0”,其中的p与q,就是开语句。对学生,只要求能分清命题“若p则q”中的条件与结论就可以了,不必考虑p与q是命题,还是开语句。 三、教学手段和方法(演示教学法和循序渐进导入法) 1。以故事形式入题 2多媒体演示 四、教学过程 (一)引入:一个生活中有趣的与命题有关的笑话:某人要请甲乙丙丁吃饭,时间到了,只有甲乙丙三人按时赴约。丁却打电话说“有事不能参加”主人听了随口说了句“该来的没来”甲听了脸色一沉,一声不吭的走了,主人愣了一下又说了一句“哎,不该走的走了”乙听了大怒,拂袖即去。主人这时还没意识到又顺口说了一句:“俺说的又不是你”。这时丙怒火中烧不辞而别。四个客人没来的没来,来的又走了。主人请客不成还得罪了三家。大家肯定都觉得这个人不会说话,但是你想过这里面所蕴涵的数学思想吗?通过这节课的学习我们就能揭开它的庐山真面,学生的兴奋点被紧紧抓住,跃跃欲试! 设计意图:创设情景,激发学生学习兴趣 (二)复习提问: 1.命题“同位角相等,两直线平行”的条件与结论各是什么? 2.把“同位角相等,两直线平行”看作原命题,它的逆命题是什么? 3.原命题真,逆命题一定真吗? “同位角相等,两直线平行”这个原命题真,逆命题也真.但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真. 学生活动: 口答:(l)若同位角相等,则两直线平行;(2)若一个四边形是正方形,则它的四条边相等. 设计意图: 通过复习旧知识,打下学习否命题、逆否命题的基础. (三)新课讲解: 1.命题“同位角相等,两直线平行”的条件是“同位角相等”,结论是“两直线平行”;如果把“同位角相等,两直线平行”看作原命题,它的逆命题就是“两直线平行,同位角相等”。也就是说,把原命题的结论作为条件,条件作为结论,得到的命题就叫做原命题的逆命题。 2.把命题“同位角相等,两直线平行”的条件与结论同时否定,就得到新命题“同位角不相等,两直线不平行”,这个新命题就叫做原命题的否命题。 3.把命题“同位角相等,两直线平行”的条件与结论互相交换并同时否定,就得到新命题“两直线不平行,同位角不相等”,这个新命题就叫做原命题的逆否命题。 (四)组织讨论: 让学生归纳什么是否命题,什么是逆否命题。 例1及例2 (五)课堂探究:“两条直线不平行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真? 学生活动: 讨论后回答 这两个逆否命题都真. 原命题真,逆否命题也真 引导学生讨论原命题的真假与其他三种命题的真 假有什么关系?举例加以说明,同学们踊跃发言。 (六)课堂小结: 1、一般地,用p和q分别表示原命题的条件和结论,用¬p和¬q分别表示p和q否定时,四种命题的.形式就是: 原命题若p则q; 逆命题若q则p;(交换原命题的条件和结论) 否命题,若¬p则¬q;(同时否定原命题的条件和结论) 逆否命题若¬q则¬p。(交换原命题的条件和结论,并且同时否定) 2、四种命题的关系 (1).原命题为真,它的逆命题不一定为真. (2).原命题为真,它的否命题不一定为真. (3).原命题为真,它的逆否命题一定为真 (七)回扣引入 分析引入中的笑话,先讨论,后总结:现在我们来分析一下主人说的四句话: 第一句:“该来的没来” 其逆否命题是“不该来的来了”,甲认为自己是不该来的,所以甲走了。 第二句:“不该走的走了”,其逆否命题为“该走的没走”,乙认为自己该走,所以乙也走了。 第三句:“俺说的不是你(指乙)”其值为真其非命题:“俺说的是你”为假,则说的是他(指丙)为真。所以,丙认为说的是自己,所以丙也走了。 同学们,生活中处处是数学,期待我们善于发现的眼睛 五、作业 1.设原命题是“若 断它们的真假. ,则 ”,写出它的逆命题、否命题与逆否命题,并分别判 2.设原命题是“当 时,若 ,则 ”,写出它的逆命题、否定命与逆否命题,并分别判断它们的真假. 教学准备 教学目标 解三角形及应用举例 教学重难点 解三角形及应用举例 教学过程 一。基础知识精讲 掌握三角形有关的定理 利用正弦定理,可以解决以下两类问题: (1)已知两角和任一边,求其他两边和一角; (2)已知两边及其夹角,求另外一边的对角(进而求其他边和角);利用余弦定理,可以解决以下两类问题: (1)已知三边,求三角; (2)已知两边和它们的夹角,求第三边和其他两角。 熟练运用正弦定理、余弦定理及其变换形式,通过三角公式解决一些涉及三角形的三角函数问题。 二。问题讨论 思维点拨:已知两边及其一边的对角解三角形问题,使用正弦定理解,但需注意解的情况分析。 思维点拨:三角形中的角度变换,应灵活运用正弦、余弦定理。在求解时,要利用三角函数的.相关性质。 例6:在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O(如图)东南方向300公里的海面P处,并以20公里/小时的速度向西北方向移动,台风影响的范围为圆形区域,当前半径为60公里,并以10公里/小时的速度逐渐扩大,问几小时后该城市开始受到台风的影响。 一。 小结: 1、利用正弦定理,可以解决以下两类问题: (1)已知两角和任一边,求其他两边和一角; (2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角); 2、利用余弦定理,可以解决以下两类问题: (1)已知三边,求三角; (2)已知两边和它们的夹角,求第三边和其他两角。 3、边角互化是解三角形问题常用的手段。 三。作业:P80闯关训练 一、教学目标设计 通过实例理解充分条件、必要条件的意义。 能够在简单的问题情境中判断条件的充分性、必要性。 二、教学重点及难点 充分条件、必要条件的判断; 充分条件、必要条件的判断方法。 三、教学流程设计 四、教学过程设计 一、概念引入 早在战国时期,《墨经》中就有这样一段话有之则必然,无之则未必不然,是为大故无之则必不然,有之则未必然,是为小故。 今天,在日常生活中,常听人说:这充分说明,没有这个必要等,在数学中,也讲充分和必要,这节课,我们就来学习教材第一章第五节充分条件与必要条件。 二、概念形成 1、 首先请同学们判断下列命题的真假 (1)若两三角形全等,则两三角形的面积相等。 (2)若三角形有两个内角相等,则这个三角形是等腰三角形。 (3)若某个整数能够被4整除,则这个整数必是偶数。 (4) 若ab=0,则a=0。 解答:命题(2)、(3)、(4)为真。命题(4)为假; 2、请同学用推断符号写出上述命题。 解答:(1)两三角形全等 两三角形的面积相等。 (2) 三角形有两个内角相等 三角形是等腰三角形。 (3) 某个整数能够被4整除则这个整数必是偶数; (4)ab=0 a=0。 3、充分条件与必要条件 继续结合上述实例说明什么是充分条件、什么是必要条件。 若某个整数能够被4整除则这个整数必是偶数中,我们称某个整数能够被4整除是这个整数必是偶数的充分条件,可以解释为:只要某个整数能够被4整除成立,这个整数必是偶数就一定成立;而称这个整数必是偶数是某个整数能够被4整除的必要条件,可以解释成如果某个整数能够被4整除 成立,就必须要这个整数必是偶数成立 充分条件:一般地,用、分别表示两件事,如果这件事成立,可以推出这件事也成立,即,那么叫做的充分条件。 [说明]:①可以解释为:为了使成立,具备条件就足够了。②可进一步解释为:有它即行,无它也未必不行。③结合实例解释为: x = 0 是 xy = 0 的充分条件,xy = 0不一定要 x = 0。) 必要条件:如果,那么叫做的必要条件。 [说明]:①可以解释为若,则叫做的必要条件,是的充分条件。②无它不行,有它也不一定行③结合实例解释为:如 xy = 0是 x = 0的必要条件,若xy0,则一定有 x若xy = 0也不一定有 x = 0。 回答上述问题(1)、(2)中的条件关系。 (1)中:两三角形全等是两三角形的面积相等的`充分条件;两三角形的面积相等是两三角形全等的必要条件。 (2)中:三角形有两个内角相等是三角形是等腰三角形的充分条件;三角形是等腰三角形是三角形有两个内角相等的必要条件。 4、拓广引申 把命题:若某个整数能够被4整除,则这个整数必是偶数中的条件与结论分别记作与,那么,原命题与逆命题的真假同与之间有什么关系呢? 关系可分为四类: (1)充分不必要条件,即,而 (2)必要不充分条件,即,而 (3)既充分又必要条件,即,又有 (4)既不充分也不必要条件,即,又有。 三、典型例题(概念运用) 例1:(1)已知四边形ABCD是凸四边形,那么AC=BD是四边形ABCD是矩形的什么条件?为什么?(课本例题p22例4) (2) 是 的什么条件。 (3)a+b是1,b什么条件。 解:(1)AC=BD是四边形ABCD是矩形的必要不充分条件。 (2)充分不必要条件。 (3)必要不充分条件。 [说明]①如果把命题条件与结论分别记作与,则既要对进行判断,又要对进行判断。②要否定条件的充分性、必要性,则只需举一反例即可。 例2:判断下列电路图中p与q的充要关系。其中p:开关闭合;q: 灯亮。(补充例题) [说明]①图中含有两个开关时,p表示其中一个闭合,另一个情况不确定。②加强学科之间的横向沟通,通过图示,深化概念认识。 例3、探讨下列生活中名言名句的充要关系。(补充例题) (1)头发长,见识短。 (2)骄兵必败。 (3)有志者事竟成。 (4)春回大地,万物复苏。 (5)不入虎穴、焉得虎子 (6)四肢发达,头脑简单 [说明]通过本例,充分调动学生生活经验,使得抽象概念形象化。从而激发学生学习热情。 四、巩固练习 1、课本P/22练习1.5(1) 2:填表(补充) p q p是q的 什么条件 q是p的 什么条件 两个角相等 两个角是对顶角 内错角相等 两直线平行 四边形对角线相等 四边形是平行边形 a=b ac=bc [说明]通过练习,及时巩固所学新知,反馈教学效果。 五、课堂小结 1、本节课主要研究的内容: 推断符号, 充分条件的意义 命题充分性、必要性的判断。 必要条件的意义 2、 充分条件、必要条件判别步骤: ① 认清条件和结论。 ② 考察p q和q p的真假。 3、充分条件、必要条件判别技巧: ① 可先简化命题。 ② 否定一个命题只要举出一个反例即可。 ③ 将命题转化为等价的逆否命题后再判断。 六、课后作业 书面作业:课本P/24习题1.51,2,3。 五、教学设计说明 1、充分条件、必要条件以及下节课中充要条件与集合的概念一样涉及到数学的各个分支,用推出关系的形式给出它的定义,对高一学生只要求知道它的意义,并能判断简单的充分条件与必要条件。 2、由于充要条件与命题的真假、命题的条件与结论的相互关系紧密相关,为此,教学时可以从判断命题的真假入手,来分析命题的条件对于结论来说,是否充分,从而引入充分条件的概念,进而引入必要条件的概念。 3、教材中对充分条件、必要条件的定义没有作过多的解释说明,为了让学生能理解定义的合理性,在教学过程中,教师可以从一些熟悉的命题的条件与结论之间的关系来认识充分条件的概念,从互为逆否命题的等价性来引出必要条件的概念。 4、由于这节课概念性、理论性较强,一般的教学使学生感到枯燥乏味,为此,激发学生的学习兴趣是关键。教学中始终要注意以学生为主,结合相关学科及学生生活经验让学生在自我思考、相互交流中去给概念下定义,去体会概念的本质属性。 函数的奇偶性 函数的奇偶性是函数的重要性质,是对函数概念的深化.它把自变量取相反数时函数值间的关系定量地联系在一起,反映在图像上为:偶函数的图像关于y轴对称,奇函数的图像关于坐标原点成中心对称.这样,就从数、形两个角度对函数的奇偶性进行了定量和定性的分析.教材首先通过对具体函数的图像及函数值对应表归纳和抽象,概括出了函数奇偶性的准确定义.然后,为深化对概念的理解,举出了奇函数、偶函数、既是奇函数又是偶函数的函数和非奇非偶函数的实例.最后,为加强前后联系,从各个角度研究函数的性质,讲清了奇偶性和单调性的联系.这节课的重点是函数奇偶性的定义,难点是根据定义判断函数的奇偶性. 教学目标: 1.通过具体函数,让学生经历奇函数、偶函数定义的讨论,体验数学概念的建立过程,培养其抽象的概括能力. 2.理解、掌握函数奇偶性的定义,奇函数和偶函数图像的特征,并能初步应用定义判断一些简单函数的奇偶性. 3.在经历概念形成的过程中,培养学生归纳、抽象概括能力,体验数学既是抽象的又是具体的任务分析 这节内容学生在初中虽没学过,但已经学习过具有奇偶性的具体的函数:正比例函数y=kx,反比例函数,(k≠0),二次函数y=ax,(a≠0),故可在此基础上,引入奇、偶函数的概念,以便于学生理解.在引入概念时始终结合具体函数的图像,以增加直观性,这样更符合学生的认知规律,同时为阐述奇、偶函数的几何特征埋下了伏笔.对于概念可从代数特征与几何特征两个角度去分析,让学生理解:奇函数、偶函数的定义域是关于原点对称的非空数集;对于在有定义的奇函数y=f(x),一定有f(0)=0;既是奇函数,又是偶函数的函数有f(x)=0,x∈R.在此基础上,让学生了解:奇函数、偶函数的矛盾概念———非奇非偶函数.关于单调性与奇偶性关系,引导学生拓展延伸,可以取得理想效果. 一、问题情景 1.观察如下两图,思考并讨论以下问题: (1)这两个函数图像有什么共同特征? (2)相应的两个函数值对应表是如何体现这些特征的?可以看到两个函数的图像都关于y轴对称.从函数值对应表可以看到,当自变量x取一对相反数时,相应的两个函数值相同. 对于函数f(x)=x,有f(-3)=9=f(3),f(-2)=4=f(2),f(-1)=1=f(1).事实上,对于R内任意的一个x,都有f(-x)=(-x)2=x2=f(x).此时,称函数y=x2为偶函数. 2.观察函数f(x)=x和f(x)=的图像,并完成下面的两个函数值对应表,然后说出这两个函数有什么共同特征. 22可以看到两个函数的图像都关于原点对称.函数图像的.这个特征,反映在解析式上就是:当自变量x取一对相反数时,相应的函数值f(x)也是一对相反数,即对任一x∈R都有f(-x)=-f(x).此时,称函数y=f(x)为奇函数. 二、建立模型 由上面的分析讨论引导学生建立奇函数、偶函数的定义 1.奇、偶函数的定义 如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫作奇函数.如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫作偶函数. 2.提出问题,组织学生讨论 (1)如果定义在R上的函数f(x)满足f(-2)=f(2),那么f(x)是偶函数吗? (f(x)不一定是偶函数) (2)奇、偶函数的图像有什么特征? (奇、偶函数的图像分别关于原点、y轴对称) (3)奇、偶函数的定义域有什么特征? (奇、偶函数的定义域关于原点对称) 三、解释应用[例题] 1.判断下列函数的奇偶性. 注:①规范解题格式;②对于(5)要注意定义域x∈(-1,1]. 2.已知:定义在R上的函数f(x)是奇函数,当x>0时,f(x)=x(1+x),求f(x)的表达式. 解:(1)任取x<0,则-x>0,∴f(-x)=-x(1-x), 而f(x)是奇函数,∴f(-x)=-f(x).∴f(x)=x(1-x). (2)当x=0时,f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0. 3.已知:函数f(x)是偶函数,且在(-∞,0)上是减函数,判断f(x)在(0,+∞)上是增函数,还是减函数,并证明你的结论. 解:先结合图像特征:偶函数的图像关于y轴对称,猜想f(x)在(0,+∞)上是增函数,证明如下: 任取x1>x2>0,则-x1<-x2<0. ∵f(x)在(-∞,0)上是减函数,∴f(-x1)>f(-x2).又f(x)是偶函数,∴f(x1)>f(x2). ∴f(x)在(0,+∞)上是增函数. 思考:奇函数或偶函数在关于原点对称的两个区间上的单调性有何关系? [练习] 1.已知:函数f(x)是奇函数,在[a,b]上是增函数(b>a>0),问f(x)在[-b,-a]上的单调性如何. 2. f(x)=-x3|x|的大致图像可能是() 3.函数f(x)=ax2+bx+c,(a,b,c∈R),当a,b,c满足什么条件时,(1)函数f(x)是偶函数.(2)函数f(x)是奇函数. 4.设f(x),g(x)分别是R上的奇函数和偶函数,并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式. 四、拓展延伸 1.有既是奇函数,又是偶函数的函数吗?若有,有多少个? 2.设f(x),g(x)分别是R上的奇函数,偶函数,试研究:(1)F(x)=f(x)·g(x)的奇偶性. (2)G(x)=|f(x)|+g(x)的奇偶性. 3.已知a∈R,f(x)=a-,试确定a的值,使f(x)是奇函数. 4.一个定义在R上的函数,是否都可以表示为一个奇函数与一个偶函数的和的形式? 教学目标: 1、掌握基本事件的概念; 2、正确理解古典概型的两大特点:有限性、等可能性; 3、掌握古典概型的概率计算公式,并能计算有关随机事件的概率、 教学重点: 掌握古典概型这一模型、 教学难点: 如何判断一个实验是否为古典概型,如何将实际问题转化为古典概型问题、 教学方法: 问题教学、合作学习、讲解法、多媒体辅助教学、 教学过程: 一、问题情境 1、有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取一张,则抽到的牌为红心的概率有多大? 二、学生活动 1、进行大量重复试验,用“抽到红心”这一事件的频率估计概率,发现工作量较大且不够准确; 2、(1)共有“抽到红心1” “抽到红心2” “抽到红心3” “抽到黑桃4” “抽到黑桃5”5种情况,由于是任意抽取的,可以认为出现这5种情况的可能性都相等; (2)6个;即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”,这6种情况的可能性都相等; 三、建构数学 1、介绍基本事件的概念,等可能基本事件的概念; 2、让学生自己总结归纳古典概型的两个特点(有限性)、(等可能性); 3、得出随机事件发生的概率公式: 四、数学运用 1、例题、 例1 有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取2张共有多少个基本事件?(用枚举法,列举时要有序,要注意“不重不漏”) 探究(1):一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出2只球,共有多少个基本事件?该实验为古典概型吗?(为什么对球进行编号?) 探究(2):抛掷一枚硬币2次有(正,反)、(正,正)、(反,反)3个基本事件,对吗? 学生活动:探究(1)如果不对球进行编号,一次摸出2只球可能有两白、一黑一白、两黑三种情况,“摸到两黑”与“摸到两白”的.可能性相同;而事实上“摸到两白”的机会要比“摸到两黑”的机会大、记白球为1,2,3号,黑球为4,5号,通过枚举法发现有10个基本事件,而且每个基本事件发生的可能性相同、 探究(2):抛掷一枚硬币2次,有(正,正)、(正,反)、(反,正)、(反,反)四个基本事件、 (设计意图:加深对古典概型的特点之一等可能基本事件概念的理解、) 例2 一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中 一次摸出2只球,则摸到的两只球都是白球的概率是多少? 问题:在运用古典概型计算事件的概率时应当注意什么? ①判断概率模型是否为古典概型 ②找出随机事件A中包含的基本事件的个数和试验中基本事件的总数、 教师示范并总结用古典概型计算随机事件的概率的步骤 例3 同时抛两颗骰子,观察向上的点数,问: (1)共有多少个不同的可能结果? (2)点数之和是6的可能结果有多少种? (3)点数之和是6的概率是多少? 问题:如何准确的写出“同时抛两颗骰子”所有基本事件的个数? 学生活动:用课本第102页图3-2-2,可直观的列出事件A中包含的基本事件的个数和试验中基本事件的总数、 问题:点数之和是3的倍数的可能结果有多少种? (介绍图表法) 例4 甲、乙两人作出拳游戏(锤子、剪刀、布),求: (1)平局的概率;(2)甲赢的概率;(3)乙赢的概率、 设计意图:进一步提高学生对将实际问题转化为古典概型问题的能力、 2、练习、 (1)一枚硬币连掷3次,只有一次出现正面的概率为_________、 (2)在20瓶饮料中,有3瓶已过了保质期,从中任取1瓶,取到已过保质期的饮料的概率为_________、、 (3)第103页练习1,2、 (4)从1,2,3,…,9这9个数字中任取2个数字,①2个数字都是奇数的概率为_________; ②2个数字之和为偶数的概率为_________、 五、要点归纳与方法小结 本节课学习了以下内容: 1、基本事件,古典概型的概念和特点; 2、古典概型概率计算公式以及注意事项; 3、求基本事件总数常用的方法:列举法、图表法、 教学目标 (1)理解四种命题的概念; (2)理解四种命题之间的相互关系,能由原命题写出其他三种形式; (3)理解一个命题的真假与其他三个命题真假间的关系; (4)初步掌握反证法的概念及反证法证题的基本步骤; (5)通过对四种命题之间关系的学习,培养学生逻辑推理能力; (6)通过对四种命题的存在性和相对性的认识,进行辩证唯物主义观点教育; (7)培养学生用反证法简单推理的技能,从而发展学生的思维能力、 教学重点和难点 重点:四种命题之间的关系;难点:反证法的运用、 教学过程设计 第一课时:四种命题 一、导入新课 【练习】 1、把下列命题改写成“若p则q”的形式: (1)同位角相等,两直线平行; (2)正方形的四条边相等、 2、什么叫互逆命题?上述命题的逆命题是什么? 将命题写成“若p则q”的形式,关键是找到命题的条件p与q结论、 如果第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互道命题、 上述命题的道命题是“若一个四边形的四条边相等,则它是正方形”和“若两条直线平行,则同位角相等”、 值得指出的是原命题和逆命题是相对的、我们也可以把逆命题当成原命题,去求它的逆命题、 3、原命题真,逆命题一定真吗? “同位角相等,两直线平行”这个原命题真,逆命题也真、但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真、 学生活动: 口答:(l)若同位角相等,则两直线平行;(2)若一个四边形是正方形,则它的四条边相等、 设计意图: 通过复习旧知识,打下学习否命题、逆否命题的基础、 二、新课 【设问】命题“同位角相等,两条直线平行”除了能构成它的'逆命题外,是否还可以构成其它形式的命题? 【讲述】可以将原命题的条件和结论分别否定,构成“同位角不相等,则两直线不平行”,这个命题叫原命题的否命题、 【提问】你能由原命题“正方形的四条边相等”构成它的否命题吗? 学生活动: 口答:若一个四边形不是正方形,则它的四条边不相等、 教师活动: 【讲述】一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题、把其中一个命题叫做原命题,另一个命题叫做原命题的否命题、 若用p和q分别表示原命题的条件和结论,用┐p和┐q分别表示p和q的否定、 【板书】原命题:若p则q; 否命题:若┐p则q┐、 【提问】原命题真,否命题一定真吗?举例说明? 学生活动: 讲论后回答: 原命题“同位角相等,两直线平行”真,它的否命题“同位角不相等,两直线不平行”不真、 原命题“正方形的四条边相等”真,它的否命题“若一个四边形不是正方形,则它的四条边不相等”不真、 由此可以得原命题真,它的否命题不一定真、 设计意图: 通过设问和讨论,让学生在自己举例中研究如何由原命题构成否命题及判断它们的真假,调动学生学习的积极性、 教师活动: 【提问】命题“同位角相等,两条直线平行”除了能构成它的逆命题和否命题外,还可以不可以构成别的命题? 学生活动: 讨论后回答 【总结】可以将这个命题的条件和结论互换后再分别将新的条件和结论分别否定构成命题“两条直线不平行,则同位角不相等”,这个命题叫原命题的逆否命题、 教师活动: 【提问】原命题“正方形的四条边相等”的逆否命题是什么? 学生活动: 口答:若一个四边形的四条边不相等,则不是正方形、 教师活动: 【讲述】一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题、把其中一个命题叫做原命题,另一个命题就叫做原命题的逆否命题、 原命题是“若p则q ”,则逆否命题为“若┐q则┐p 、 【提问】“两条直线不平行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真? 学生活动: 讨论后回答 这两个逆否命题都真、 原命题真,逆否命题也真、 教师活动: 【提问】原命题的真假与其他三种命题的真 假有什么关系?举例加以说明? 【总结】 1、原命题为真,它的逆命题不一定为真、 2、原命题为真,它的否命题不一定为真、 3、原命题为真,它的逆否命题一定为真、 设计意图: 通过设问和讨论,让学生在自己举例中研究如何由原命题构成逆否命题及判断它们的真假,调动学生学的积极性、 教师活动: 三、课堂练习 1、若原命题是“若p则q”,其它三种命题的形式怎样表示?请写在方框内? 学生活动:笔答 教师活动: 2、根据上图所给出的箭头,写出箭头两头命题之间的关系?举例加以说明? 学生活动:讨论后回答 设计意图: 通过学生自己填图,使学生掌握四种命题的形式和它们之间的关系、 教师活动: 一、目标 1.知识与技能 (1)理解流程图的顺序结构和选择结构。 (2)能用字语言表示算法,并能将算法用顺序结构和选择结构表示简单的流程图 2.过程与方法 学生通过模仿、操作、探索、经历设计流程图表达解决问题的过程,理解流程图的结构。 3情感、态度与价值观 学生通过动手作图,.用自然语言表示算法,用图表示算法。进一步体会算法的基本思想——程序化思想,在归纳概括中培养学生的逻辑思维能力。 二、重点、难点 重点:算法的顺序结构与选择结构。 难点:用含有选择结构的流程图表示算法。 三、学法与教学用具 学法:学生通过动手作图,.用自然语言表示算法,用图表示算法,体会到用流程图表示算法,简洁、清晰、直观、便于检查,经历设计流程图表达解决问题的过程。进而学习顺序结构和选择结构表示简单的流程图。 教学用具:尺规作图工具,多媒体。 四、教学思路 (一)、问题引入 揭示题 例1 尺规作图,确定线段的一个5等分点。 要求:同桌一人作图,一人写算法,并请学生说出答案。 提问:用字语言写出算法有何感受? 引导学生体验到:显得冗长,不方便、不简洁。 教师说明:为了使算法的表述简洁、清晰、直观、便于检查,我们今天学习用一些通用图型符号构成一张图即流程图表示算法。 本节要学习的是顺序结构与选择结构。 右图即是同流程图表示的算法。 (二)、观察类比 理解题 1、 投影介绍流程图的符号、名称及功能说明。 符号 符号名称 功能说明 终端框 算法开始与结束 处理框 算法的`各种处理操作 判断框 算法的各种转移 输入输出框 输入输出操作 指向线 指向另一操作 2、讲授顺序结构及选择结构的概念及流程图 (1)顺序结构 依照步骤依次执行的一个算法 流程图: (2)选择结构 对条进行判断决定后面的步骤的结构 流程图: 3.用自然语言表示算法与用流程图表示算法的比较 (1)半径为r的圆的面积公式 当r=10时写出计算圆的面积的算法,并画出流程图。 解: 算法(自然语言) ①把10赋与r ②用公式 求s ③输出s 流程图 (2) 已知函数 对于每输入一个X值都得到相应的函数值,写出算法并画流程图。 算法:(语言表示) ① 输入X值 ②判断X的范围,若 ,用函数Y=x+1求函数值;否则用Y=2-x求函数值 ③输出Y的值 流程图 小结:含有数学中需要分类讨论的或与分段函数有关的问题,均要用到选择结构。 学生观察、类比、说出流程图与自然语言对比有何特点?(直观、清楚、便于检查和交流) (三)模仿操作 经历题 1.用流程图表示确定线段A.B的一个16等分点 2.分析讲解例2; 分析: 思考:有多少个选择结构?相应的流程图应如何表示? 流程图: (四)归纳小结 巩固题 1.顺序结构和选择结构的模式是怎样的? 2.怎样用流程图表示算法。 (五)练习P99 2 (六)作业P99 1 重点难点教学: 1、正确理解映射的概念; 2、函数相等的两个条件; 3、求函数的定义域和值域。 教学过程: 1、使学生熟练掌握函数的概念和映射的定义; 2、使学生能够根据已知条件求出函数的定义域和值域; 3、使学生掌握函数的三种表示方法。 教学内容: 1、函数的'定义 设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数fx和它对应,那么称:fAB?为从集合A到集合B的一个函数(function),记作:,yf A其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{|}f A?叫值域(range)。显然,值域是集合B的子集。 注意: ① “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”; ②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x、 2、构成函数的三要素定义域、对应关系和值域。 3、映射的定义 设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。 4、区间及写法: 设a、b是两个实数,且a (1)满足不等式axb??的实数x的集合叫做闭区间,表示为[a,b]; (2)满足不等式axb??的实数x的集合叫做开区间,表示为(a,b); 5、函数的三种表示方法 ①解析法 ②列表法 ③图像法 【高中数学的教学设计】相关文章: 高中数学教学设计07-05 高中数学大单元教学设计02-22 高中数学教学设计(15篇)11-08 高中数学大单元教学设计常用[7篇]07-19 高中数学
10-24 高中数学教学总结06-20 高中数学的
05-21 高中数学教学总结08-17 高中数学
03-05 高中数学
范文01-02高中数学的教学设计3
高中数学的教学设计4
高中数学的教学设计5
高中数学的教学设计6
高中数学的教学设计7
高中数学的教学设计8
高中数学的教学设计9
高中数学的教学设计10
高中数学的教学设计11
高中数学的教学设计12
高中数学的教学设计13
高中数学的教学设计14
高中数学的教学设计15