- 相关推荐
《分数除法》说课稿
作为一无名无私奉献的教育工作者,通常需要用到说课稿来辅助教学,说课稿是进行说课准备的文稿,有着至关重要的作用。那么应当如何写说课稿呢?以下是小编收集整理的《分数除法》说课稿,供大家参考借鉴,希望可以帮助到有需要的朋友。
《分数除法》说课稿1
我今天说课的内容是分数与除法中的第一课时。我将就“教学内容和教学要求、教学目的、重点、难点的确定、教学方法的选择、教学过程的设计”等四方面进行说明。
(一)、关于教学内容和教学要求的认识
“分数与除法的关系”这一教学内容,是小学教学第十册第四单元中第一小节的授课内容,这部分内容是在学过分数除法的意义和计算法则、分数乘法应用题、用方程解已知一个数的几分之几是多少求这个数的文字题的基础上进行教学的。同求一个数的几分之几是多少的应用题一样,本小节教学的一个数的几分之几是多少求这个数的应用题,也是由于分数乘法意义的扩展,相应地除法意义的具体含义也有了扩展而产生的新的应用题。本节课承接了分数的意义等知识,又为今后学习单位名称的转化和分数的大小比较等内容做好知识的铺垫,所以让学生很好的掌握分数与除法之间的关系,体会量与率的区别十分重要。指导思想是以培养学生动手操作能力,创新能力以及收集信息和处理信息的能力,发展学生空间观念。
(二)、关于教学目的、重点、难点的确定
根据对教学内容和教学要求的认识,针对学生的学习水平,我确定本节课的教学目标如下:
1、知识目标:理解并掌握分数与除法的关系,知道如何用分数来表示除法算式的商。
2、能力目标:培养学生动手操作的能力,合作交流的能力,发展学生的逻辑思维和分析处理问题的能力。
3、情感目标:在生生合作中学会倾听,收集他人的信息,在师生合作中,大胆创新勇于发现,不畏艰难。勇于探索和思考,培养学生转化的思想。
本节的重点是理解分数与除法之间的关系。而本节的难点是具体体会每一个商的由来,它具体表示的意义,也就是通过分数与除法之间各部分关系的教学,实际上要将分数的意义在学生的感性认识上进行一次升华。本节课我采取利用具体实物,图形相结合的教学手段来进行教学,教学过程的设计采取在大量的数活动和数学信息中感知知识产生和发展的过程。在教学进行中,要充分创设让学生主动探究的学习氛围,设计生动有趣,富有个性的数学活动,在学习中使学生获得有价值的数学,实实在在的学好基础知识,让每个学生通过学都得到不同程度的发展营造民主、和谐、活跃的学习空间,培养学生学习数学的能力。
(三)、教学方法的选择
贯彻“以学生为主体,教师为主导,训练思维为主线”的原则。
1、自主探究、寻求方法
让学生充分自主探究、寻求分数除法的解题方法。
2、设计教法体现主体
课堂设计以学生为主体,教师是领路人,注重学生间的合作与交流各抒已见、取长补短、共同提高。
3、分层练习、注重发展
练习有层次,由尝试练习到综合练习到发展练习,层层深入。
(四)、教学过程的设计
一、激情引入,自主建构。
这一部分的目的是在已有的知识上学习新知识,让学生感知知识产生和发展的过程,为重点的落实,难点的突破铺路搭桥。
(1)(课件展示)
1)6块月饼分给3人,每人分多少块?
2)1块月饼分给2人,每人分多少块?
3)1块月饼分给3人,每人分多少块?
(2)问一问他们怎样计算每人分得的块数?
(3)当他们发现不能得到整数的`商时,引导他们讨论应该怎样表示他的结果。
从而板书课题——分数与除法。
(4)介绍分数表示除法的商的由来。
二、在目标的递进中,获得积极的数学学习情感。
这一部分的目的是在学生已初步建立了分数与除法的关系时,将数学活动变成师生之间,生生之间交往互动与共同发展的过程,遵循学生认知的特点,进一步发展思维能力,创造有现实性,挑战性和趣味性的数学活动。
(1)出示例1:例1:把1个蛋糕平均分给3人,每人分得多少个?
1)生讨论
1在讨论过程中,启发学生用一个数表示
2在小组中说一说,你是怎么想的。
2)生汇报讨论结果
生1:从图上我可以知道每人分得这块蛋糕的
生2:求每人分得多少个,要算1÷3得多少?
师:1÷3得多少呢?
(2)出示例2:把3块饼平均分给4个孩子,每人平均分得多少块?
——首先请他们估算一下每个人应分得多少块?
参考答案:
A、半块B、半块多c、一块
——其次,小组合作动手操作。
——最后展示分法
(3)列出完整的算式,并用分数来表示具体的结果。
(4)在教授完例1和例2后,不忙于理论的总结,因为在这里学生都只是停留在表面的感性认识。那么教学设计为请他们观察黑板上的算式和结果,猜测分数与除法之间有什么关系,根据学生不同的认知情况,安排模仿练习,感性体验数学活动。
把1米长的钢管平均分成3份,每份长多少米?
体会当得不到整数结果的时候,用分数来表示他们的商,发现分数的分子是除法里的被除数,分母是除法里得出术,在总结完各部分关系与分母公式后,请他们推理一下,除法理由具体要求吗?(除数不能为零)那分数有没有要求呢?说一说理由,教师板书b≠0,引导进行验证从分母所表示的意义说明没有意义。
三、掌握知识技能,实现数学思想的深入。
结合本书的重点,难点,这一部分教学的目的要是学生理解并掌握,分数与除法之间的关系,并能在应用中形成一定的技能。在有层次的练习中,能体验到成功的快乐,建构知识的框架,实现数学思想的逐步深入。
练习设计主要分为以下几个层次:
①强化分数与除法的关系:
4÷5=5÷12=7÷8=
让学生叙述一下你观察到了什么?发展学生的口头表达能力。然学生想一想,你都可以知道什么?发展学生的空间想象观念训练知识的迁移能力。怎样解答?进一步巩固所学的知识。
②用分数表示商的意义的总体认识。
单位换算:9cm=()dm3cm=()m7dm=()m
11秒=()分5分=()时8时=()天
四、画龙点睛,留下个性发展的空间。
课程的最后以学习目标进行提纲式小结,便于学生形成知识的网络,再次重申本节的重点和难点,培养学生质疑问难的好习惯教师引导思考练习一中每段的长度都不一样,要将分数与除法之间的关系从认识上、意义上、联系上进行一次升华。给学生一个完整的认识,为今后的继续学习留下个性发展的空间,释放无穷的潜能。
五、板书设计。
第一部分为新授例题。
第二部分为总结的分数与除法的关系知识。
第三部分为分层次的发展思维。
这样设计的目的再现了知识产生和发展的过程,体现了一切事物发展的本质特点,更重要的是渗透给学生,从实践中上升为理论,又用于指导新的实践,在实践中检验理论的真实性,从而树立从小爱科学的唯物主义世界观。
《分数除法》说课稿2
一、说教材
这部分内容,是在学生学过分数除法的意义和计算法则、分数乘法应用题、用方程解“已知一个数的几分之几是多少,求这个数”的文字题的基础上进行教学的。同求一个数的几分之几是多少的应用题一样,本小节的教学的“已知一个数的几分之几是多少,求这个数是多少”的应用题,也是由于分数乘法意义的扩展,相应的除法意义的具体含义也有了扩展,从而产生了新的应用题。这类应用题历来是学生学习的难点。教材安排仍采用先列方程求解的方法,加强了与求一个数的几分之几是多少的乘法应用题的联系,重点帮助学生分析题里的'数量关系,特别是对单位“1”的量的准确分析,明确它是已知还是未知,以此来确定怎样用方程解。此外也加强了方程解与算术除法解的联系,使学生通过方程解领会此类应用题的特征,学会用算术法直接列式计算。这样既培养学生灵活解答分数应用题的能力,也有助于发展学生思维的广度。
二、说教学目标和教学重、难点
(一)教学目标(出示多媒体)
1、知识目标:使学生学会用方程解答“已知一个数的几分之几是多少,求这个数的分数除法应用题,并掌握检验的方法。
2、能力目标:培养学生的观察尝试、创新的能力。
3、情感目标:让学生通过两种方法解答应用题 的体会,感受获得成功体会的经历,树立学好数学的信心,有良好的数学情操。
(二)教学重点(出示多媒体)
用方程解答“已知一个数的几分之几是多少,求这个数”的分数除法应用题,也是由于分数除法意义的扩展,相应的除法的意义的具体含义也有所扩展,而产生新的应用题。掌握这类应用题的结构特征,能用方程和算术方法解决,是难点所在。
三、说教法、学法。
为了真正地落实新课程标准,把课堂的主动权还给学生,激发学生求知的欲望,使探索发现成为学生自身发展的需要,让他们主动参与探索学习的过程,变教为主为学为主,提高获取知识的本领,因此本节课我主要采用自主探索的方法进行教学,从而达到教是为了不教的目的。六年级学生已具备了较强的动手操作能力和观察推理能力,并且仍具有好玩、好奇的特征,因此我主要指导学生采取以下的学法,使学生不仅“学会”,更要“会学”。以分组合作的形式,充分调动学生的感官,让学生积极主动地参与知识的产生和发展过程,有充分的时间讨论、思考,自己主动的获取知识,获得成功的体验,感到学习带来的快乐,真正实现教师角色的转变,使学生成为课堂的主人。
四、说教学过程
(一)引出新知
好的开始是成功的一半。新课的引入是课堂教学的重要环节,是一堂课成功的起点。
第一个环节:复习旧知,促进迁移
该环节主要复习与新知有密切联系的旧知,为新知的探究铺路搭桥,激发学生探究新知的欲望,调动学生的学习积极性,设计如下:
1、根据题意写出下面的数量关系。
共三个小题,让学生思考后口答,教师板书数量关系。
2、出示与例题有关的分数乘法应用题。学生练习后,提问:这道题为什么用乘法计算?怎样用图表示已知条件和问题,把谁看作单位“1”?
第二个环节:创设情境,探究新知
对小学生来说,通过自己的探索获取新知,就是一种再创造,第二个环节的教学,我设计如下层次展开:
第一层次:独立探索
出示例3后,激励:老师相信同学们一定会解决这个难题,开始行动吧!先放手让学生尝试列式计算。教师提示可根据复习题的数量关系式,用未知数X帮助自己解这道题。
第二层次:合作探索
在学生计算出例3的结果后,再组织学生分组合作,讨论交流是怎么做的?为什么这样做?我做得对吗?存在什么疑问?
在此基础上,教师引导学生学习如何画图表示题意,找数量关系,根据数量关系列方程。该环节是学生学习时的难点所在,只有让学生深入理解题意,了解此类题型的结构特征,把握题中所含的数量关系,才能真正把知识内化为能力,做到举一反三,运用自如。我如此设计,正基于此。这样做既培养了学生的团结合作的精神,又培养了学生的分析推理调整的能力。
第三层次:尝试练习
让学生独立完成教材117页的第3题,个别学生板演,教师在学生完成后集体点评,强调学习的难点。
第三个环节:变式练习,巩固深化
练习的设计要抓基础知识与发展创新能力紧密结合起来,以达到发展思维,形成技能的目标。在此环节我设计了如下练习:
1、定位练习。
仿照例3出示类似的两道应用题,要求学生读题,画图,深入理解题里的数量关系,列出数量关系式。强化难点,形成技能。
2、提高题:同来互相编题,互相解答。
通过以上练习,促使学生将新的知识溶入到已有认知结构中,以利于更好的迁移和运用。
第四个环节 课堂作业 反馈信息
完成课本练习二十三第4-7题
(三)说“诱思探究”在本节课的具体体现
1、以学生为主体,教学中多次引导学生尝试练习,引导学生把旧知与新知进行对比;引导学生自主探索,亲身体验,切实把学生推向学习探索的第一线。体现了“诱思探究”对当代课堂教学的要求。
2、设计多层次,多形式的练习,促使知识的形成和内化。教学中,我做到复习铺垫练,新知尝试练,难点强化练,是练习面向全体学生,人人参与,全员动手,从而使学生的创新能力培养得到了落实。
五、说板书设计
分数除法应用题
例3:白海货运码头有一批货物,运走了 ,还剩240吨,这批货物原有多少吨?运走了剩下240吨? 吨
(一)解:设这批货物原有X吨。 (二) 240÷(9-5)×9
X — X = 240 =
X = 240 =
我这样板书,对启迪学生思维,开发学生智力,增强学生的记忆,加深对所学的知识的理解,都起到了“画龙点睛”的作用。
《分数除法》说课稿3
撰写公开课教案是每个教师都必需熟悉的一项工作,好的公开课教案能够激发同学兴趣,培养同学多方面的能力,有效提高课堂教学效率。本站提供的这套五年级下册《分数除法》公开课教案符合新课标的规范,思路清晰,结构合理,适合同学的年龄特征,与素质教育的要求相吻合,具有科学性、实用性等优点。
教学内容(课题):倒数
教学目标和要求:
1、在计算、比较、观察,发现倒数的特征并理解倒数的意义。
2、掌握求一个数的倒数的方法。
教学重点:
会求一个数的倒数。
教学难点
理解“倒数”是不能孤立存在的。
教学准备:
教学时数:1课时
教学过程:
一、教学过程
师:请同学们结合语文的学习,猜几个字,中国的汉字结构优美,有上下结构,左右结构,假如把“杏”上下颠倒,变成什么字了?(呆)把“吴”字颠倒呢?(吞) 那数是不是也有这样的特性呢?
师:事实上,一个数也可以倒过来变成另一个数,比方3/4倒过来变成了4/3,1/7倒过来变成7/1。
师:你能根据它的特性给它起个名字吗?(倒数)今天我们就一起来研究倒数。(板书课题:倒数)
师:请同学们打开教材第24页,在书上完成“算一算”,并认真观察考虑,看你有什么发现。
组织同学交流自身的发现,引导同学总结几组算式的一起特点(乘积都是1),以和算式左边的`两个乘数的关系(分子和分母互相颠倒),从而引出倒数的概念。
师:你怎样描述上面算式中两个乘数的关系呢?(根据同学的回答,教师板书)
乘积是1乘积是1
2/3*3/2=12*1/2=1
8/11*11/8=11/10*10=1`
7/9*9/7=17*1/7=1
6/5*5/6=11/5*5=1
分子和分母颠倒分子和分母颠倒
师:乘积是1的两个数互为倒数。你能说出黑板上谁和谁互为倒数吗?还能举出其他例子来吗?(同学举例,教师板书:2/3和3/2互为倒数 )
师:你们是怎么理解“互为”这两个字的?能否举出生活中的例子?(同学举例,如互为朋友是指互相是朋友 )
二、试一试
主要是让同学理解整数可以看作是分母为1的分数,1的倒数还是1。
三、想一想
教师借助分数中分母不能为0,说明0没有倒数。
四、练一练
同学独立完成P24。
《分数除法》说课稿4
一、说教材
这部分内容,是在学生们学过分数除法的意义和计算法则、分数乘法应用题的基础上进行教学的。这类应用题历来是学生们学习的难点。教材安排仍采用先列方程求解的方法,加强了与求一个数的几分之几是多少的乘法应用题的联系,重点帮助学生们分析题里的数量关系,特别是对单位“1”的量的准确分析,明确它是已知还是未知,以此来确定怎样用方程解。此外也加强了方程解与算术除法解的联系,使学生们通过方程解领会此类应用题的特征,学会用算术法直接列式计算。这样既培养学生灵活解答分数应用题的能力,也有助于发展学生们思维的广度。
二、说教学目标和教学重、难点
根据教材特点和学生实际我确定本节课的教学目标是:
(1)会分析较复杂的分数除法应用题数量关系。
(2)能列方程正确解答稍复杂的分数除法应用题。
(3)培养学生初步的逻辑思维能力。
教学重点是:能用方程正确解答稍复杂分数除法应用题。
教学难点是:确定单位“1”、分析数量关系。
三、说教法、学法
1.自主探究、寻求方法
让学生充分自主探究、寻求分数除法的解题方法。
2.设计教法体现主体
课堂设计以学生为主体,注重学生间的合作与交流各抒已见、取长补短、共同提高。
四、说过程
1.复习铺垫(分两个内容)
现价是原价的`4/5;男生比女生多1/3;今年比去年少2/5;火车速度比汽车快2/9
让学生来说说等量关系,找一找单位“1”
合唱队有女生30人,男生比女生多1/3,女生有多少人?
意图:解决问题中关键是找出题目中关键句的等量关系,因此安排了这一环节,一来是回顾,二来是在这里分散难点,以便在接下来出现一个完整题目,数量关系的分析能较为自然了。
2.教学新知
改例题为男生比女生多1/3,女生有多少人?
(补充)男生比女生少1/3,女生有多少人?
比较的目的:为了让学生明白这里的等量关系不变,变的是其中的已知与未知的量,因此我们仍然可以顺着刚才的思路,把未知的量设为X,应该说学生是不会有困难的。
例题与补充题的比较是考虑到,比单位“1”多(少)几分之几的区别,数量关系不一样了,其中未知与已知的量是相同的。也可以用方程的方法来解决。
《分数除法》说课稿5
第一单元的教学也基本上完成了。回顾分数乘法这一单元的教学,在备课时一直被如何处理分数乘法意义困惑。后来一想,如果从数学应用的角度来看,学生只要能从具体的实际问题中判断两个数据之间存在相乘的关系就可以了,而这个相乘的关系在本单元有了新的拓展,即求几个相同加数的和、求一个数的几倍是多少和求一个数的几分之几是多少。
在教学分数和整数相乘时,根据学生的已有的知识基础,引导学生回忆复习整理整数乘法的意义和同分母分数的加法的计算法则。另外科学的学习方法,能提高学习效率,能使学生的智慧得到充分发挥。在教学分数和整数相乘的计算法则时,从学生所熟悉的整数和小数乘法的意义入手,引入分数乘法。
此外本单元在备课之初,师傅就提示自己在教学完分数乘整数和一个数乘分数后要先补充一个课时比较分数加法和分数乘法之间的区别,再进行分数乘法混合运算和简便计算的教学。当时的自己是听的一头雾水,不明白师傅的用意。直到真的开始教学分数乘法混合运算时,才明白了师傅的良苦用心。虽然在师傅的提醒下自己有进行分数加法和乘法的对比教学。但是晚上的作业还是有部分学生计算分数加法时按照分数乘法运算的规则进行计算(按分子和分子相加,分母和分母相加),到这时自己才知道师傅当时为什么要让自己对比分数乘法和加法。看到学生的作业,自己在第二天的分数乘法混合运算时,在课前复习时再次讲解分数乘法和加法的不同。让学生在计算的时候有个比较清楚的认识。虽然这个问题解决了,但是学生在分数乘法混合运算时又遇到了另一个问题,部分学生在计算加乘混合运算时,特别是加法在前面而乘法在后面的问题时,先计算加法而不是先计算乘法,在老师的指点之下才恍然大悟。说明学生对于四则运算的运算顺序不够熟练。自己在今后的教学中,也应着重强调四则运算的运算顺序。
本单元的教学,分数乘法解决问题也是一个重点内容。在帮助学生分析题意时,学生如果会画线段图,对于理解题意会有很大的`帮助。但可能是由于在五年级时,比较少要求学生画出线段图,根据线段图理解题意。因此当六年级明确要求要根据题意画出线段图时,学生刚开始时很不习惯,画出的线段图也不能很好的反应题意,对于这一方面,教学时需要再进行加强,因为这对于提高学生分析问题,解决问题的能力将会有很大提高。而下一单元的教学如果学生能根据题意画出合适的线段图,对正确解答问题将会有很大的帮助。
此外,在教学中注重对单位1的理解,重点放在在应用题中找单位1的量以及怎样找的上面先找出问题中的分率句再从分率句中找出单位1,为以后应用题教学作好辅垫。在以后教学前我还要深钻教材,把握好课本的度,向其他教师请教,取长补短。在课堂上多激发学生的兴趣,课后多与学生沟通,了解他们的学习动态。根据实际情况来教学,提高教学质量。
《分数除法》说课稿6
一、说教材
我教学的内容是小学数学第十一册第二单元分数除法应用题例1、例2。这部分内容是在学过分数除法的意义和计算法则、分数乘法应用题、用方程解已知一个数的几分之几是多少求这个数的文字题的基础上进行教学的。同求一个数的几分之几是多少的应用题一样,本小节教学的一个数的几分之几是多少求这个数的应用题,也是由于分数乘法意义的扩展,相应地除法意义的具体含义也有了扩展而产生的新的应用题。根据教材特点和学生实际我确定本节课的
教学目标是:
(1)会分析简单的分数除法应用题数量关系。
(2)能列方程正确解答简单的分数除法应用题。
(3)培养学生初步的逻辑思维能力。教学重点是:能用方程正确解答分数除法应用题。
教学难点是:
确定单位“1”、分析数量关系
二、说教法:
本节课我贯彻“以学生为主体,教师为主导,训练思维为主线”的原则
1、自主探究、寻求方法
让学生充分自主探究、寻求分数除法的解题方法。
2、设计教法体现主体
课堂设计以学生为主体,教师是领路人,注重学生间的合作与交流各抒已见、取长补短、共同提高。
3、分层练习、注重发展
练习有层次,由尝试练习到综合练习到发展练习,层层深入。
三、说教程:
一、导言:
以前我们学过了分数应用题,这节课我们继续研究分数应用题,(板书:分数应用题)。
二、复习:
1.说说下面各题中应该把哪个看作单位“1”,数量之间相等关系怎样?
①吃了一筐白菜的2/5。
②一本书的价格正好是一支钢笔价格的2/5。
③小明体内的水分占体重的4/5。
三、自主探究、解决问题
1、教学例1
①小明体内所含的水分是28千克,占体重的4/5,他的体重是多少千克?
仔细观察看一看有没有什么发现?
独立做,做完组内交流,组长分好工,做好记录,看看哪个小组方法多,你们小组准备由谁发言,用几句话表达自己小组的方法。
小结:老师也认为用方程解比较容易,因为它的解题思路与我们以前学的分数乘法应用题的思路是一致的,也是根据题中的叙述的条件明确把谁看作单位1,然后根据一个数乘分数的意义列出等量关系式,由于单位1是未知的,要设成x,列出方程进行解答。这也是我们本节课所要掌握的已知一个数的`几分之几是多少求这个数的应用题用方程解的方法。
2、教学例2。
②小明买一条裤子是75元,是一件上衣的2/3,一件上衣是多少钱?
(看题)(独立完成后说说自己的想法)
3、比较例1、例2有什么不同。
师:例1、例2虽然存在着不同指出,但是解题方法是类似的。我们再做两道题看看是不是这样。(投影出示做一做1、2)。请两名同学在投影片上做,其他同学在本上做,做后请同学叙述怎样做的,为什么这样做。
小结:通过以上的学习,同学们觉得分数应用题在解答时的关键是什么?
四、练习
4、判断下列说法是否正确。
五、总结全课
师:好了,同学们,这节课我们学习了列方程来解已知一个数的几分之几是多少,求这个数的应用题,学好这部分知识对于提高我们解决问题的能力,发展我们的思维有着重要的作用,同学们表现得非常好,希望你们继续努力。
《分数除法》说课稿7
一、教材分析
各位老师,你们好!今天我说课的内容是:人教版义务教育课程标准实验教科书,六年级上册的第三单元,分数除法的意义和分数除以整数。分数除法的意义及计算方法是本单元的重要内容。是在学生学习了分数乘法和求倒数的基础上进行教学的,是分数除法教学的起始课,为学生以后学习分数四则混合运算和分数除法应用题打下坚实的基础。
二、学情分析
六年级学生在二年级时已经知道了整数除法的意义,在本册知道了分数乘法的意义、计算方法和求一个数的倒数的方法,这些已有的知识为学生探索本课新知打下了坚实的基础。学生在学习分数乘法的过程中,通过折一折、涂一涂等活动探索出了分数乘法的意义和计算方法,学生可以运用同样的方法探索分数除以整数的计算方法。学生对于折纸活动很感兴趣,在“玩”的过程中能够感知分数除以整数的基本算理,可以归纳出分数除以整数的计算方法。
三、教学目标
根据新课标的要求和教材的特点,结合六年级学生的认知能力,本节课我确定如下的教学目标:
1、理解分数除以整数的意义,掌握分数除以整数的计算方法,并能正确计算。培养学生动手能力及发现问题、解决问题的能力。
2、通过富有启发性的问题情景和折一折、图一图等探索性的学习活动,引导学生主动参与,独立思考,合作交流,形成计算技能。
3、在教学中渗透转化的思想,让学生充分感受转化的美妙与魅力。体验其中的成就感,增强学生学习数学的自信心。
根据本节教学内容的特点,结合我班学生的实际情况。我把本节课的教学重点和难点确定为:
四、教学重、难点
重点是理解分数除法的意义和分数除以整数的计算方法;
难点是分数除法一般算法的理解。这是因为要将除以一个数转化为乘以它的倒数,在运算形式上由除法转化为乘法,变化较大,而学生往往由于思维的定势,一时不容易接受。所以本课的关键是如何引导学生在实验和验证中自主体验和感悟。
五、教学流程
为此,我设计了一下的教学环节,并采取了相应的教学方法、指导学生学习。
旧知铺垫—知识迁移—自主探究—巩固提高—完善总结。
六、教学准备
课件、5等份长方形白纸、直尺、彩色笔。
七、说教学流程
(一)旧知铺垫
复习时我安排了两道练习,引发学生记忆的再现,为学生选择原有知识中的有效的信息做好铺垫。
先复习倒数,由同桌两人互相出题,其中一人报数,另一个人说出它的倒数。再完成分数乘法两道题,3个1/4是多少?3/7的1/3是多少?让学生说一说意义和计算方法。
【设计意图】本节课的内容是以倒数和乘法计算为基础的。分数除以整数的计算方法与倒数紧密联系,因此,在引入新课之前,带领学生系统深入地复习倒数和分数乘法的相关知识是很有必要的。
(二)知识迁移
1、复习整数除法的意义
(出示3盒标注100克的水果糖)问:共重多少克?先请学生列出乘法算式,借此改编成两道整数除法应用题,并列出两个除法算式。这时引导学生观察两个除法算式与乘法算式的关系,学生发现除法是乘法的逆运算,同时得出整数除法的意义。已知两个因数的积和其中的一个因数,求另一个因数的运算。
2、引出分数除法的意义
如果以千克作单位又该怎样做呢?先请学生先独立思考,再试着写一写,接着汇报列式。
预设学生回答有两种形式的算式:
(1)整数形式:100×3=300(克)=0.3(千克)
(2)小数形式:100克=0.1千克;0.1×3=0.3(千克)
(3)分数形式:100克=1/10千克;1/10×3=3/10(千克)
【设计意图】这样的处理不仅有利于学生系统建构整个乘法的意义,而且,还能促使学生自然而然的把分数除法意义与整数除法、小数除法意义统一起来。这样一来,接下去的理解就显得水到渠成啦。
3、除法意义对照
进一步引导学生对这三种形式进行观察比较,请学生说一说他的发现,从而理解分数除法的意义与整数、小数除法的意义都相同。并试着用自己的语言小结分数除法的意义。同时板书课题。
4、进一步理解分数除法的意义
完成数学书第28一页的做一做和练习八的第一题。目的是更好的理解分数除法的意义,为后面的学习做好铺垫。
(三)自主探究
1、创设问题情境:没有已知的乘法算式,你还会计算(4/5)÷2这道分数除法吗?
学生两人一组,先独立思考,在互相交流,然后折一折、图一图,动手操作研究问题。
预设学生回答:
学生甲.因为2×(2/5)=4/5,所以(4/5)÷2=2/5
这是受刚才所学除法意义的影响,迁移而来;
学生乙.(4/5)÷2=4÷(2/5)=2/5
大部分学生是竖着对折,将4/5平均分成2份,其中一份是这张纸的2/5,看到4与2的倍数关系,想当然的在计算。
学生丙.(4/5)÷2=(4/5)×(1/2)=2/5
学生将长方形纸横着折,有部分学生能说出用(4/5)×(1/2),就是求4/5的1/2是多少。
2、接着引导学生理解、比较学生乙和学生丙的方法。
师:乙的方法:4/5里面有()个()/(),(4/5)÷2表示平均分成几份,每份有()个()/();(课件演示)丙的方法:把4/5平均分成几份,每份就是4/5的()/(),就是(4/5)×()/()。(课件演示)
【设计意图】通过这个折法的体验,使学生深刻认识到,不管怎么折,只要平均分成两份,每份始终是它的1/2,也就是说始终可以将÷2转化为乘以1/2,再利用课件动画演示,横着平均分,其中的一份占4/5的1/2,就是求出4/5的1/2是多少?根据一个数乘分数的意义就用4/5乘1/2,就可得其中的一份是这张纸的几分之几。然后在黑板上板书计算过程。
第二步:教学4/5÷3
结合上面几种算法,你认为分数除以整数的计算方法可能是怎样的?学生乙和学生丙这两种方法学生都可能选择。我们进一步往下研究。这时并不急于统一思想,转而问学生把一张纸的4/5平均分成3份,每份是这张纸的几分之几?要求先折一折,涂一涂,再计算
当再次折纸时,学生采用自己刚才的算法计算4/5÷3的商,有的学生可能会发现自己刚才的的算法不适合本题。他们就会倾向于感知“把一张长方形纸的4/5平均分成3份,图出其中的一份,就是图出4/5的1/3”。当学生确定了这种观点后,离分数除以整数的计算方法就又进了一步。
然后进行反馈,并引导思考:
(1)平均分成3份,每份是4/5的1/3?求一个数的几分之几又应该怎么计算呢?
(2)为什么不选学生甲或学生乙这两种方法?通过验证说明丙比甲和乙方法更实用。
此时通过对比和思考,应该说对学生丙的方法已经有了较为深刻的认识。
【设计意图】苏霍姆林斯基曾说过:“引导学生能借助已有的经验去获取知识,这是最高的教学技巧之所在。”学习不是学生被动接受老师授予的知识,也不是知识的简单积累,它是学习者认知结构的组织和重组,是学生主动建构知识意义的过程。一开始初步比较哪种方法好,学生此时并没有什么感觉;而体验4/5÷3的求解过程,使学生自觉的在心里进行了比较,也就是主动的开始建构认识,这时加深了学生对分数除以整数意义的理解。
第三步:实验与验证
1.这时问学生,其它这样的分数除法的计算是不是也和刚才两题一样呢?请学生用4/5分别除以4或5等几个整数,来进一步实验和验证分数除以整数的计算方法。然后统一看法后,一起来总结分数除以整数的计算方法
【设计意图】在理解例题的基础上,抛出一个疑问:其它这样的分数除以整数的计算是不是也能将除数转化为乘以它的倒数呢?从学生的思维历程看,这真是一波刚平,一波又起。促使学生积极思考,并产生要进行实验和验证的动机。
2.反馈交流。
归纳:一般化计算方法用符号表示:A÷B=A×(1/B)(B不为0)
引导学生观察:形式上看什么变了,什么没变?
【设计意图】这里不仅是为了培养学生的符号意识,目的在于培养学生的概括能力,促进更好的理解。现代教学论认为:数学课在经历了感性交流和实践探索以后,应该在数学层面上形成对知识的客观性及其本质的'更为深刻的理解,从而形成科学的态度和严谨的思维。
(四)巩固提高
1、形式训练
(7/15)÷4=(7/15)×()
(5/16)÷6=(5/16)(1/6)
(3/10)÷5=()()
这样的图式训练对正确掌握分数除法的一般化算法是很有效的。因为小学生的思维毕竟还具有很大的直观性,图式的强化将促使学生在理解算法时有一个直观的支撑,这样的理解也就愈深刻。
2、计算训练。(要求写出过程)
(2/3)÷4(5/6)÷5(3/8)÷6(4/9)÷7
3、应用:
(1)将2/3米长的丝带剪成同样长的5段,每段有多长?
(2)小红3天看了一本书的1/5,照这样计算,看完这本书要多少天?
整个练习的设计突出分数除法计算方法的巩固,同时也安排了应用练习,尤其是第二题,还注意了学生逻辑推理能力的培养。
(五)完善总结
总之,本节课始终以‘落实学生主体地位、发挥教师主导作用’为指导思想,不断引导学生进行类比、比较、探究、实验和验证,从特殊到一般,由除法到乘法,促使学生积极主动的构建认识,发展思维,形成有效课堂。
以上教学程序的设计遵循学生的认知规律和年龄特点,对计算进行探究式教学,学生是学习的主人,让学生自主探究,交流,让学生体验成功的喜悦。学生在教师的引导中操作、思考、验证解决问题,从而使学生获得了知识,发展了智力,培养了积极的学习情感,使课堂焕发了活力。
板书设计
我设计的板书,目的是突出教学的重点和难点,让学生对新知识的生成一目了然,加深印象。
分数除法的意义和分数除以整数
例1每盒水果糖重100g,3盒重多少g?(kg)?
100×3=300(g)0。1× 3=0。3(kg)(1/10)×3=3/10(kg)
300÷3=100(g)0。3÷ 3=0。1(kg)(3/10)÷3=1/10(kg)
300÷100=3(盒)0。3 ÷0。1=3(盒)(3/10)÷(1/10)=3(盒)
分数除法的意义与整数除法和小数除法的意义相同:都是已知两个因数的积与其中的一个因数,求另一个因数的运算。
例2把一张纸的4/5平均分成2份,每份是这张纸的几分之几?
方法A。2×2/5=4/5,所以(4/5)÷2=2/5
方法B.(4/5)÷2= 4÷(2/5)= 2/5
方法C.(4/5)÷2=(4/5)×(1/2)= 2/5
分数除以整数(0除外),等于分数乘这个整数的倒数。
《分数除法》说课稿8
各位老师,下午好。
今天我说课的题目是分数除法(二)。
一、说教材:
分数除法(二)北师大版数学五年级下册第三单元的第三课时。它是分数除以整数的后继性学习,为分数除以分数及后面的分数混合运算提供认知和学习基础。
教材对本课时的教学方法是让学生通过多次观察,从中归纳出一个数除以分数的计算法则,我称这为倒数计算法。然而根据我多年的教学经验来看,学困生并不能正确运用倒数计算法,为了让大多数学生都能掌握并能正确计算一个数除以分数,教学中我引进了通分计算法。
为此,我把本课时的教学目标定为以下三条:
1、掌握一个数除以分数的方法,并能正确计算。
2、经历猜测、验证和归纳的过程,利用通分法计算的结果来推理出倒数法计算的过程。
3、利用数形结合的方式,体会“转化”的数学思维方法。
本课时的教学重点是运用计算方法正确进行计算,教学难点是理解一个数除以分数的计算方法。
二、说教法和学法:
本课时教师在教学中引导学生多看图观察,让学生经历猜测、验证和归纳的学习过程,使他们通过小组合作理解计算法则。
三、教、学具准备。
老师准备平均分成2份、3份和4份的圆纸片各4张,为学生准备一张练习纸,练习纸上画好三组没有平均分的'圆纸片和书第27页上画一画的题目,把书中已画出的部分隐去,让学生亲自去画。
四、说教学过程:
1、复习铺垫,提供猜测基础。
数学的学习离不开学生的经验基础和认知水平,为了让学生能正确理解本课时内容,我首先出示复习题1:“把1/2张饼平均分给4个小朋友,每个小朋友能分到几张饼?”学生根据前一课时所学方法分别用倒数法:1/2÷4=1/2×1/4=1/8(张)或者用通分法:1/2÷4=1×4/2×4÷4=1/8(张)通过列式计算。然后让学生说一说计算法则。
接着出示题2:有4张同样大的饼,每2张一份,可分成多少份?
在解答这两题的基础上,我提出问题:猜一猜4÷1/2等于几?由于受到上一课时的负迁移,部分学生仍然会用一个分数乘整数的倒数,算成:1/4×1/2=1/8,当然也可能会正确计算出结果。这时教师适时引导学生明白:判断一个猜想是否正确,需要通过科学地验证。
这样的`设计既为学生提供了学习新知识的经验基础,又能激起学生学习新知识的兴趣。
2、验证猜想,理解计算过程。
为了让学生更易理解题意,我把书中情境图改成具有生活气息的题目:有4张同样大的饼。每个小朋友吃1/2张,可分给几个小朋友吃?
学生在练习纸上画出平均分的过程,并通过小组合作形式理解计算的过程。反馈时,教师引导学生用自己的话说清计算的思路,大部分学生会认为1张饼里有2个1/2,可以分给2个小朋友吃,4张饼就能分别8个小朋友吃,列式为:4÷1/2=4×2=8(个)。但这个过程并不能使学生自然过渡到对倒数法解题的理解,也就是说,学生通过4÷1/2=4×2=8(个)并不能理解4÷1/2可以用4×1/2的倒数来计算。这时我引进了通分法来计算:让学生观察示意图,理解4÷1/2就是求4里面含有几个1/2。而4就是8/2,根据学生以前知识结构,学生易于知道里有8个,最后根据学生的回答板书计算方法,4÷1/2=8÷1/2=8;追问:8是怎样算出来的?学生再次从计算的角度去思考:当两个分数的分母相同时,只需要用被除数的分子除以除数的分子就能求出商。
由于通分法计算遵从了学生的认知水平,易于被学生尤其是学困生理解,而倒数法的意义很难被学生理解,但它简洁的计算过程又是今后学习不可或缺的。所以在教学中我把两种计算方法同时渗透,力求使让通分法成为理解倒数法的基石。
这个教学过程完成了教学目标中的“让学生经历猜测、验证和归纳的过程,利用数形结合的方式,体会“转化”的数学思维方法。”
3、大量练习,使用计算方法。
数学的归纳过程不是把一个单一的数学现象,而是把一系列有相同特点的数学现象抽象成具有代表意义的符号特征,这就是建模过程。
为了让学生能充分感知一个数除以分数的计算过程,我先出示了两道变式题:每个小朋友吃1/3张、1/4张饼,可分给几个小朋友吃?让学生模仿前面的例题进行实际操作,独立完成计算,教师巡视中加强学困生的辅导。
由于前面几个除数的分子都是1,学生还不会去有意识地总结计算方法,仍会去想:只要看看一张饼里有几个这个分数,然后再用4去乘个数就行了。所以此时让学生归纳倒数法计算的方法还为时过早,为了使学生摆脱这种思维的束缚,真正从倒数的角度去观察和体会除数的变化,我又引进了变式题:每个小朋友吃2/3张饼,可分给几个小朋友吃?
这时学生通过画图不再能看出一张饼可以分给几个小朋友吃了,引起学生认知经验的冲突。教师要求学生以合作的形式根据黑板上的板书去解答,并说一说:你是怎样思考的?由于倒数法计算很难说清算理,反馈时学生大多会借用通分法来说明:4÷2/3=12/3÷2/3=6。根据教学目标对通分法运用的定位(是为了使学生相信倒数法计算结果是正确的。),此时一定要让学生再次进行尝试:你们能用倒数法进行计算吗?边计算边观察:什么在变?什么不变?让学生独立计算,如果他们把被除数变成了倒数,肯定与通分法计算的结果不同,这时会自行修正,并体会老师提出的问题:什么在变?什么不变?
接着出示书中“画一画”的练习,以同桌合作的方式,再次让学生体会借用图形来理解计算的优势,认识数形结合对数学解题的帮助,从而完成这三个教学目标。
在大量计算的基础上,引导学生观察这些算式,然后用自己的话归纳出一个数除以分数的计算方法。
4、观察比较,选择计算方法。
让学生观察用通分法与倒数法的计算过程,体会倒数法在计算中简洁优美。但让学生体会:如果觉得通分法更适合,也可以使用通分法进行计算。
《数学课程标准》提倡让不同的人在数学上得到不同的发展,对于数学认知水平较低的学生,允许他选择并不优化的方法,等知识水平有了进步再来运用其他更有利的方法进行学习。
5、归纳总结,完善计算法则。
通过前面多次的叙述和大量的计算,计算法则已是呼之欲出了,但学生的语言不够简洁扼要。这时我提出:看谁说的计算方法与数学家说的方法最接近?并说出前一部分:“一个数除以分数等于——”。让学生接着完成后面的部分。最后出示书中的计算方法,并对学生的归纳总结提出鼓励性评价——太棒了,你们大多数都有数学家的天份。
五、说板书:
板书内容较多,从学生的猜测到验证过程,一步步引导学生体会数学的学习方法,为学生选择自己喜欢的计算方法提供了直观可靠的依据。
《分数除法》说课稿9
这节课内容是在学生学习了分数的意义、初步探索并解决求一个数是另一个数几分之几的实际问题的基础上学习的。理解分数与除法的关系,既是进一步理解分数意义的需要,也是学习把假分数化成整数或带分数以及学习分数与小数互化等知识的基础。
教学目标:
1.使学生结合具体情境,探索并理解分数与除法的关系,会用分数表示两个整数相除的商,会用分数表示有关单位换算的结果;
2.能列式解决求一个数是另一个数的几分之几的实际问题。
3.使学生在探索分数与除法的过程中,进一步发展数感,培养观察、比较、分析、推理等思维能力,体验数学学习的乐趣。
教学重点:理解分数与除法的关系。
教学难点:具体体会每一个商的由来和表示的含义。
教学过程:整个教学过程共安排4个环节完成。
一、复习铺垫。出示情境图:把8块饼平均分给4个小朋友 ,每人可以分得多少块?如何列式,为什么?
二、探索新知:分成以下6个层次完成。
第1层,分析问题,列出算式。我首先把刚才的情境图变为:把3块饼平均分4个小朋友,每个人分得多少块?学生很容易将复习题的解题方法迁移过来,列出算式3 4,老师适时板书出来。
第2层,动手操作,探究结果。引导学生观察算式,发现每人分到的饼不满1块时,可以用分数表示。这个分数是多少呢?接着让学生根据课前准备的圆形卡片,在小组内动手做一做。
第3层,组织交流分法,得出答案。可能会出现两种分法。一种是一块一块地分,每人每次分到1/4块,3个1/4块是3/4块。第2种分法,3块一起分,每人分得3块的1/4,即3/4块。老师根据学生的回答将两种分法用电脑动画逐个演示。并相机完成板书:3 4=3/4.
第4层,自主探究。在此基础上,我提出“把3块饼平均分给5个小朋友,每人分得多少块?"让学生自主探索。并让学生将探索的结果在小组内交流。并在组织交流时适时板书:3 5=3/5.
第5层,归纳总结。这时,我指着板书内容提出问题:观察黑板上的两个等式,你发现分数与除法有什么关系?同时板书课题:分数与除法的关系。在学生充分交流后老师小结:被除数相当于分子,除数相当于分母。然后板书:被除数 除数=被除数/除数。最后,让学生理解并掌握分数与除法关系的字母表达式,并让同学们讨论为什么分母不能为0,让其明白其中的道理,板书:a b=a/b.
第6层,尝试练习。先试做“试一试”的题目。反馈时让学生说说是怎么想的?
接着让学生独立做练一练的两组题。第一题要让学生比较一下每组的上下两题有什么不同,进一步理解分数与除法的.关系,第二组继续让学生说说是怎么想的。
三、巩固新知。这一环节共安排5组习题。
1、做练习八的第一题。先让学生在小组里说说,再指名口答。
2、做练习八的第二题。独立填写,集体订正。
3、做练习八的第三题。让部分学生说说是怎么向的。
4、做练习八的第四题。要让学生说出题中的问题有什么不同。
5、做练习八的第五题。让学生联系分数的意义填空,再引导学生根据分数与除法的关系列出算式。
四、全课总结。这节课我们学习了哪些知识,你有什么收获和感想?先让学生说一说,老师在适时补充:这节课我们学习了分数与除法的关系,其实数学上很多知识之间都是有联系的,同学们不但要会做题,更要思考这些知识间的内在联系,这样你就会越来越聪明。
《分数除法》说课稿10
一、说教材
我说课的教学内容是《分数与除法的关系》。
本课时内容是在学生学习了第七册分数的初步认识及上一单元数的整除等知识的基础上来学习的,为下面进一步学习分数与小数的互化、分数的大小比较、分数的基本性质及求一个数是另一个数的几分之几等知识打基础。本课时内容,教材安排了例1、例2两个例题,以引导学生发现、归纳出分数与除法的关系,然后安排了5道练习题(可说说各题意图),通过练习使学生能初步地应用这个关系进行相应的除法计算,以及解决简单的实际问题,巩固所学的新知识,并从中培养学生的探究能力。本课时内容是学生进行除法计算中,商从整数向分数拓展的转折点。(说教材的前后联系、地位作用)
本课时的教学目标,我从知识与技能、数学思考、情感态度方面确定了以下三点:
1、通过学生的合作探究活动,引导学生发现归纳出分数与除法的关系,理解并掌握这个关系。
2、能根据分数与除法的关系,进行基本的除法计算,以及解决一些简单的实际应用问题。
3、培养学生的发现归纳的探究能力以及认真仔细的学习习惯。
我认为本课时的教学重点是引导学生发现、掌握分数与除法的关系。
教学难点是理解分数与除法的关系教学准备:多媒体课件一套、学生课堂作业题纸。
二、说教学方法
新课标指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。根据以上分析,我认为本课时的教学以分数的意义、分数单位、等分除法的意义为基点,以直观图(数形结合)为手段,在学生对两个例题的自主探究合作学习中,引导学生发现归纳出分数与除法的关系,然后通过有层次的练习,以及解决简单的实际问题的过程中,进一步巩固对这个关系的掌握,发展学生的计算技能,培养学生的探究能力。
三、说教学过程:
本节课的教学,我设计了以下三个环节。
(一)复习铺垫、引入新课。
可以出示分数,让学生结合生活中的事例说说这个分数表示的意义。这里复习分数的意义、分数单位,主要目的是为下面的探究分数与除法的关系作了知识上铺垫准备。数学学习要让学生利用已有的知识经验,通过自己的探究去学习。本环节的复习可以起到唤起记忆,思维定向的作用。
(二)自主探究、发现关系。
本环节的教学是本节课的重难点所在。课标指出有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。本环节的教学
我设计了以下五步来完成。
第一步
设计了一个准备题“把6米长的铁丝平均截成3段,每段长多少米?”要求学生自己列式计算,并说出列式的依据——总米数÷段数=每段米数(总数÷份数=每份数,这个数量关系也是本课中两个例题的列式依据),搭起解题的框架,以实现解法迁移。
第二步
是教学例1(1),通过改题出示例1(1)“把1米长的铁丝平均截成3段,每段长多少米?”,要求学生尝试列式计算,并说出思考过程,引导学生比较上两题的异同,得出除法计算的结果在不能用整数表示的情况下,可以用分数来表示,通过画图使学生1米的3(1)就是3(1)米即1÷3=3(1)(米)。然后追问:如果把1米长的铁丝平均截成7段、10段,每段长多少米?这里使学生认识到1÷m=m(1),初步感受分数与除法的关系。
第三步
再改题出示例1⑵“把2米长的铁丝平均截成3段,每段长多少米?”要求学生尝试列式计算,请学生动手画一画,想一想你可以怎样来说明这个计算结果是正确的,并能让同学确信、理解。这里是本课学生理解上的一个难点。可以应
用数形结合的思想,充分借助线段图,画一画,移一移,比一比,使学生理解2米的3(1),有2个3(1)米,就是3(2)米,即2÷3=3(2)(米)
第四步
是教学例2“把3块蛋糕平均切成4份,每份是多少块?”,可以通过学具折剪,移拼展示,力求直观形象,使学生理解3块的4(1),有3个4(1)块,就是4(3)块,即3÷4=4(3)(块)。
第五步
是引导发现,得出关系。引导学生仔细观察板书,相一想刚才的学习内容,可以组织学生把自己的发现在四人小组内交流、讨论。从而得出并完善分数与除法的关系。
新课标强调有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。从以上设计,分数与除法的关系的得出,体现了学生是学习的主人,教师是数学学习的组织者、引导者与合作者的教学理念。前面两例的教学其实是为发现归纳分数与除法的关系积累表象,准备素材。所以前面两例的教学不要消耗过多的时间,要发挥教师的主导作用对学生的自主探究过程也要适当的调控。发现归纳分数与除法的'关系是本节课的重点,可以组织学生讨论,体现多向互动学习的学习方式。
(三)巩固练习、应用拓展。
数学知识的掌握、数学能力素养的培养形成需要通过练习,通过对所学新知的应用,才能内化和掌握。巩固练习的设计要遵循准对性、层次性、开放性、趣味性、综合性等要求。本课的巩固练习我设计了以下三个层次的练习。
第一层次是让学生用分数表示一组除法算式的商。
第二层次是让学生填空。如除法中的被除数相当于分数中的(),除数相当于分数中的(),除号相当于分数中的(),()不能为零。()÷()=。这里是直接巩固分数与除法的关系。
第三层次是让学生列式计算,解决简单的实际问题。可以出示例如:
①一个正方形的周长是3分米,它的边长是多少分米?(用分数表示)
②小华15分钟走2千米,他平均每分钟走多少千米?(用分数表示)
③把3米长的铁丝平均截成7段,每段长多少米?(用分数表示)
每段占全长的几分之几?
(要求:比较本题两问的区别,明确第一问是根据“总米数÷段数”得到每段数,即3÷7=7(3)米,所求结果表示一个具体的数量,是带单位名称的;第二问是把全长看作单位“1”,把单位“1”7等份中取1份,即1÷7=7(1),所求结果表示部分与总数的分数关系,是根据分数的意义来思考,结果不带单位名称。通过本题使学生辨析清楚分数表示具体数量、表示份数关系的两种意义。)
以怎样来说明这个计算结果是正确的,并能让同学确信、理解。这里是本课学生理解上的一个难点。可以应用数形结合的思想,充分借助线段图,画一画,移一移,比一比,使学生理解2米的3(1),有2个3(1)米,就是3(2)米,即2÷3=3(2)(米)
《分数除法》说课稿11
一、说教材
这部分内容,是在各位同学学过分数除法的意义和计算法则、分数乘法应用题的基础上进行教学的。
这类应用题历来是各位同学学习的难点。教材安排仍采用先列方程求解的方法,加强了与求一个数的几分之几是多少的乘法应用题的联系,重点帮助各位同学分析题里的数量关系,特别是对单位“1”的量的准确分析,明确它是已知还是未知,以此来确定怎样用方程解。此外也加强了方程解与算术除法解的联系,使各位同学通过方程解领会此类应用题的特征,学会用算术法直接列式计算。这样既培养各位同学灵活解答分数应用题的能力,也有助于发展各位同学思维的广度。
二、说教学目标和教学重、难点
根据教材特点和各位同学实际我确定本节课的教学目标是:
(1)会分析较复杂的分数除法应用题数量关系。
(2)能列方程正确解答稍复杂的分数除法应用题。
(3)培养各位同学初步的逻辑思维能力。教学重点是:能用方程正确解答稍复杂分数除法应用题。教学难点是:确定单位“1”、分析数量关系。
三、说教法、学法
1.自主探究、寻求方法
让各位同学充分自主探究、寻求分数除法的解题方法。
2.设计教法体现主体
课堂设计以各位同学为主体,注重各位同学间的合作与交流各抒已见、取长补短、共同提高。
四、说过程
1.复习铺垫(分两个内容)
现价是原价的4/5;男生比女生多1/3;今年比去年少2/5;火车速度比汽车快2/9
让各位同学来说说等量关系,找一找单位“1”
合唱队有女生30人,男生比女生多1/3,女生有多少人?
意图:解决问题中关键是找出题目中关键句的等量关系,所以安排了这一环节,一来是回顾,二来是在这里分散难点,以便在接下来出现一个完整题目,数量关系的分析能较为自然了。
2.教学新知
改例题为男生比女生多1/3,女生有多少人?
(补充)男生比女生少1/3,女生有多少人?
比较的目的:为了让各位同学明白这里的等量关系不变,变的是其中的.已知与未知的量,所以我们仍然可以顺着刚才的思路,把未知的量设为X,应该说各位同学是不会有困难的。
例题与补充题的比较是考虑到,比单位“1”多(少)几分之几的区别,数量关系不一样了,其中未知与已知的量是相同的。也可以用方程的方法来解决。
《分数除法》说课稿12
各位评委、各位专家:
大家下午好!
今天,我说课的题目是《分数除法一》。下面我将从教材、教法与学法、教学过程、板书设计、课堂评价五个方面来进行授课说明。
一、下面我先来说教材
这一环节包括:教学内容、教材分析、教学目标、教学重难点。
1.首先我来说一下教学内容。
本课节选自北师大版《义务教育课程标准实验教科书》第十册第三单元第二课时的《分数除法一》――即分数除以整数。
2.接下来我说的是教材分析。
本课属于数与代数领域,是在学生学习了分数乘法、认识了倒数的基础上教学的,教材中呈现了两个层次的问题。第一层次是把一张纸的7分之4平均分成2份,每份是这张纸的几分之几?,第二层次是把一张纸的7分之4平均分成3份,每份是这张纸的几分之几?目的是让学生在涂一涂、算一算的过程中通过数形结合,理解一个数除以整数的意义。
3.紧接着我要说的是教学目标
知识技能目标:理解分数除以整数的意义,掌握分数除以整数的计算方法,并能正确计算。
数学思考目标:通过自主探究、合作交流,培养学生手脑协调能力以及发现问题、提出问题、分析问题、解决问题的能力。
解决问题目标:了解分析问题和解决问题的一些基本方法,知道同一个问题可以从不同的角度去处理。
情感态度目标:经历自主探究、合作交流、得出结论的过程,体验其中的成就感。
4.有了教学目标,接下来说本节课的教学重点
重点:理解分数除法的意义,掌握分数除以整数的计算方法。
难点:理解分数除以整数计算法则的推导过程。
二、接下来说教法与学法:教无定法,贵在得法
1.我选择的基本教法是:启发式谈话法。
主要教法是:操作练习法。
辅助教法是:情境激趣法。
这样的教法只是对学生学习的一个引导。真正的体验还来自学生的学法,我准备采用动手操作法、合作交流法、练习法三种学法。
2.我准备的教具是:我准备采用多媒体设备,因为这样的教具会使课堂教学直观、形象、生动、高效,有利于调动学生的学习热情。
我准备的学具是:两张长方形操作卡,目的是让学生在操作中感受知识的形成过程,掌握重点、理解难点。
三、现在说教学过程
为了让学生在发展中学数学,学发展中的数学,我设计了以下教学环节:
(1)铺垫导入我准备投入的时间是(3到5分钟)
(2)而新知生成我准备用(18分钟)
(3)巩固拓展预设的时间是(10分钟)
(4)而总结延伸我准备用(2到3分钟)
1.关于铺垫导入我是这样构建的:与本节课衔接紧密的知识点有二:一是倒数;二是分数的意义。所以,我设计了以上两个内容(课件)的铺垫练习。而分数的意义又与本节课紧密相连,所以,我以一句“如果把这个分数继续分下去就是我们今天要学的分数除法一”,随后引出课题,转入新知教学。
2.新知生成:依据最佳时间原理,这一环节是在学生思维的最佳期进行教学的,大约需要18分钟。下面依据教材编排的顺序分三层进行授课说明。第一层,情境一:把一张纸的平均分成两份,每份是这张纸的几分之几?引导学生依据整数除法的意义列式,随即板书:除以2。
之后,引导学生独立在操作卡上分,涂,反馈后得出答案,板书。紧接着,进行此题的提炼归纳,及分子能被除数整除的计算方法,并模仿出题。第二层,把一张纸的平均分成4份,每份是这张纸的几分之几?引导列式,板书。在这里,我对教材进行了尝试性变动,原题是“把一张纸的平均分成三份,每份是这张纸的几分之几?”改动后保持其被除数的分子不能被整数整除的本质“把这张纸的平均分成4份”更便于学生分、涂、折的操作。在分、涂、折之后,得出答案。
3.学生学习新知后,必须以形式多样的练习加以巩固提高,所以接下来我要说巩固拓展:这一教学环节,我遵循由浅入深、拾级而上的'练习原则设计了以下三个层次的练习。
第一个是基础练习:单一的判断习题和单一的计算习题,目的是为突出分数除以整数的计算法则这一重点。
第二个是实际应用的练习题:这一形式的练习会让学生将知识与日常生活紧密联系,深刻体验数学与生活密不可分。
第三个是拓展拔高的练习题:开放的课堂需要开放的思路,这样的练习是针对学有余力的学生设计开发的智能题,体现了尊重个体学生特点的原则。
通过以上层层练习,不但巩固了新知,而且训练了学生思维的敏捷性、灵活性、深刻性,学法得以贯彻,知识得以传输。
4.总结延伸
延伸作业有二:
第一项:(课后仔细读课本25到26页)通过这个作业培养学生的读书习惯,重要的是训练学生从书本获取知识的能力。
第二项:(依据今天所学知识自己练习5道分数除以整数的练习题)目的是训练学生思维的发散性,使他们既收获知识又训练能力。
四、下面我来说一下板书设计
分数除法一
除以一个整数(0除外)等于乘这个整数的倒数,我设计的板书力求体现知识性、简洁性、层次性、既突出了重点,又突破了难点。
五、下面我来说一说课堂评价
《义务教育数学课程标准》指出:“评价要关注学生的学习结果,更要关注学生的学习过程,帮助学生认识自我,建立自信。”因此我引导学生反思,让学生交流,这一节课,你有什么收获?有哪些方面的体会?通过师评、他评、自评,让学生的学习探究过程更加高效、更加快乐。
《分数除法》说课稿13
一、 教材分析
(一)教材地位和作用
圆是常见的几何图形之一,不仅在日常生活中被广泛应用,在几何中也占有重要的地位,而且是进一步学习数学以及其他学科的重要基础。本节讲的是圆与圆的五种位置关系,
(二)教学目标
知识与技能
(1)了解圆与圆的五种位置关系,掌握运用圆心的距离的数量关系或用圆与圆交点个数来确定圆与圆的五种位置关系的方法。
(2)了解切线、割线的概念。
过程与方法
通过生活中的实际事例,探索圆与圆的五种位置关系
情感态度与价值观
学生通过操作,实验,发现,确认等数学活动,从探索圆与圆的位置关系中,体会运动变化的观点,量变到质变的`辨证唯物主义的观点,感受数学中的美感
(三)重点、难点
重点:利用数量关系揭示圆与圆的位置关系
难点:利用圆与圆位置关系解决实际问题
二、 教法学法
教法的设计 情境创设 设疑启发 引导交流 探索创新
学法的设计 观察猜想 自主探究 合作交流 归纳创新
三、教与学互动设计
1、情境引入
本节课我是这样导入的,首先出示四幅图片。【同学们你们观察这些图片,找一找其中的圆有哪些位置关系,请用自己的语言表达出来。】
同学们会各抒己见,老师不要过早的下结论,而是让同学们在下一环节继续探究。
2、合作探究
在这一环节我让同学们拿出事先做好的圆,让他们小组合作探究圆和圆之间到底有几种位置关系。
老师巡回指导
3、得出结论
【为了让同学们更深刻的理解掌握圆与圆的五种位置关系,教师演示课件。学生观看并总结结论。圆与圆之间有五种位置关系:相离外切相交内切 内含】
为了让同学们更加深刻的理解圆与圆的五种位置关系,在这里我又引导同学们从焦点个数对两圆位置关系进行分类。
为了让同学们理解圆心之间的距离在五中位置关系中和两圆半径之间有怎样的数量关系我在这里设计了五种动画课件,教师演示让同学们进行归纳。
4、巩固新知
为了巩固以上知识,我在这里设计了三个简单的练习题,只是简单的应用五种位置关系中圆心和半径之间的数量关系。
为了提高同学的能力,只是简单应用还不够,于是我又设计了例题。因为例题有难度所以需要师生共同完成。
5、综合拓展
为了巩固以上学习的内容我在这里设计一个练习题,希望同学们能够独立完成。
为了提高同学们学习数学的兴趣我在这里设计了一个环节,争当小小设计师。这一环节既能提高同学们学习数学的兴趣又能提高同学们的能力。同时还能活跃课堂气氛,让同学们体会到生活中处处有数学,数学就来源于生活,同时课堂变的丰富多彩让同学们能够学着乐乐着学。
6、布置作业
最后一个环节是布置作业,我的说课到此就结束了
《分数除法》说课稿14
一、说教材。
我说课的内容是人教版课程标准实验教科书六年级上册的分数除法单元中的例1和例2。例1是分数除法的意义认识,例2是分数除以整数的计算。在这之前学生已经掌握了整数除法的意义和分数乘法的意义及计算,而本课的学习将为统一分数除法计算法则打下基础。
例1先是对整数除法意义的回顾,再由100克=1/10千克,从而引出分数乘除法算式,通过类比使学生认识到分数除法的意义与整数除法的意义相同,都是‘已知两个因数的积和其中一个因数,求另一个因数的运算’。例2是分数除以整数的计算教学,意在通过让学生进行折纸实验、验证, 引导学生将‘图’和‘式’进行对照分析,从而发现算法,感悟算理,同时也初步感受数形结合的思想方法。
根据刚才对教材的理解,本节课的教学目标是:
1、通过实例,使学生理解分数除法的意义与整数除法的意义是相同的。
2、动手操作,通过直观认识使学生理解分数除以整数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。
3、经历观察、猜测、实验、验证和归纳的过程,感受数形结合的思想方法,并从中发展抽象思维能力。
本课的重点是理解分数除法的意义和分数除以整数的计算方法;
本课的难点是分数除法一般算法的理解。这是因为要将除以一个数转化为乘以它的倒数,在运算形式上由除法转化为乘法,变化较大,而学生往往由于思维的定势,一时不容易接受。所以本课的关键是如何引导学生在实验和验证中自主体验和感悟。
二、说教法、学法。
为了达成教学目标,本课的教学必须贯彻以学生为主体,坚持启发与发现法相结合的教学方法,引导学生大胆猜想,提出有价值的问题,让学生的思维活动得到有效的提升,动手实践,在体验中、在交流中发现规律。
学习方法上强调以探究学习法和动手操作法为主。认知结构理论告诉我们,学习是学生积极主动的内化过程。只有通过主动参与获得的知识,才是有意义的。因此,在重难点的学习上,通过折纸实验与验证,数形结合,从而实现真正的理解。
三、说教学过程。
开课,就对前一单元所学的分数乘法的计算和一个数乘分数的意义进行复习,目的在于为教学分数除以整数的计算方法打下基础,因为分数除以整数就等于这个分数的几分之一,根据一个数乘分数的`意义,就用分数乘几分之一就可以得到结果,而对于分数除法的意义,就直接利用例1的素材导出整数除法的意义再迁移到分数除法的意义。
(一) 问题创境,对比迁移,理解分数除法的意义。
在教学例1时,我没有直接把教材中的三个问题端出来,而是让学生通过教师给出的信息来提出数学问题,学生编出乘法问题并列式解答后,问学生:你能根据这个乘法问题编出两个除法问题吗?然后再一一列式解答,再通过对这三个算式的观察比较,得到整数除法的意义。这样安排教材,我的理解是:如果直接将素材一一呈现出来,感觉很单调泛味生硬,不能留住学生的注意力和激起学生学习的兴趣,对思维活动就是一种压抑,反过来我这样安排,感觉是把静态的教材动态的出现在学生面前,利用素材自问自答,对学生来说是一次有价值有效的思维活动,对学生的思维能力应该是有一个提升的,同时问题也可以激发学生学习数学的兴趣,吸引学生的注意力。
然后指出问题中是以克为单位,如果以千克为单位,100克应该怎么改写?改写后,算式应该怎么列?后面两题中的单位也改写了,又怎么列式计算?用一系列的问题,迁引出分数乘除法的算式,再通过对分数乘除法算式的仔细观察,观察时引导学生对照整数乘除法的算式,找到之间的共同点,从而得到分数除法的的意义与整数除法的意义相同,我这样教学的想法是:第一因为问题更有挑战性而能更有效激发学生的兴趣;第二锻炼提高学生的观察比较事物的能力;第三通过比较自然得出分数除法的的意义与整数除法的意义相同,让学生有种水到渠成的感觉,体味到在数学中知识是存在相互联系的。
在完成做一做中,学生快速回答了2/3×4/7=8/21 8/21÷4/7=( ) 8/21÷2/3=( )的结果后,问:你怎么这么快就得到结果了呢?这个问题能更好让学生利用除法的意义来解决问题,从而加深对除法意义的理解。
(二)自主探究,掌握算法。
第一步:教学4/5÷2
1。创设问题情境:拿出一张长方形的纸,把这张纸的4/5平均分成2份,求每份是这张纸的几分之几?
○1尝试列式;
○2组织折纸实验;
2。学生汇报,引导理解方法A和B。
○1师:4/5里面有()个()/(),÷2表示平均分成两份,每份有()个()/();
○2师:在折出的长方形里,涂一涂,再来解释两种方法。
○3师:还有不同的分法吗?
第二步:教学4/5÷3
让学生明白为什么不选方法A?从中说明方法C与A相比有什么优点?
第三步:拓展,实验与验证
1.师:其它这样的分数除法的计算是不是也和刚才两题一样呢?
2.反馈交流。
观察: 算式(形式上看)什么变了,什么没变?
归纳:分数除以整数就等于分数乘整数的倒数。除转化成乘,整数转化成几分之一。
(三)练习巩固、拓展提高。
1. 形式训练。
7/15÷4=7/15×( )
5/16÷6=5/16 1/8
3/10÷5=( ) ( )
2.计算训练。(要求写出过程)
2/3÷4 5/6÷5 3/8÷6 4/9÷7
3.应用:
将2/3米长的丝带剪成同样长的5段,每段有多长?
(四)课堂总结。
总之,本节课始终以‘落实学生主体地位、发挥教师主导作用’为指导思想,不断引导学生进行类比、比较、探究、实验和验证,从特殊到一般,由除法到乘法,促使学生积极主动的构建认识,发展思维,形成有效课堂。
《分数除法》说课稿15
一、教材分析
“分数与除法的关系”这一教学内容,是小学数学第十册,第五单元中第一小节的授课内容,本节课承接了分数的意义等知识,又为今后学习,单位名称的转化和分数的大小比较等内容做好知识的铺垫,所以让学生很好的掌握分数与除法之间的关系,体会量与率的区别十分重要。
二、教学目标
本节课的指导思想是以培养学生动手操作能力,创新能力以及收集信息和处理信息的能力,发展学生空间观念。
分数与除法的关系这一小节的目标有以下几点:
1、知识目标:是理解并掌握分数与除法的关系,知道如何用分数来表示除法算式的商。
2、能力目标:培养学生动手操作的能力,合作交流的能力,发展学生的逻辑思维和分析处理问题的能力。
3、情感目标:在生生合作中学会倾听,收集他人的信息,在师生合作中,大胆创新勇于发现,不畏艰难。勇于探索和思考,培养学生转化的思想。
三、课前准备
本课材的内容是由以下几部分组成的':
第一部分:是将1个物体平均分,来体会除法算式与分数的商的结果之间的联系。
第二部分:是将3个物体来平均分,来体会每份的多少?它的商与除法之间的关系。
第三部分:是本节的升华,总结分数与除法间的关系,归纳字母表示关系式。
第四部分:是教学有关单位名称之间的转化。
本节的重点是理解分数与除法之间的关系。而本节的难点是具体体会每一个商的由来,它具体表示的意义,也就是通过分数与除法之间各部分关系的教学,实际上要将分数的意义在学生的感性认识上进行一次升华。本节课我采取利用具体实物,图形相结合的教学手段来进行教学,教学过程的设计采取在大量的数活动和数学信息中感知知识产生和发展的过程。
在教学的进行中,要充分创设让学生主动探究的学习氛围,设计生动有趣,富有个性的数学活动,在学习中使学生获得有价值的数学,实实在在的学好基础知识,让每个学生通过学都得到不同程度的发展营造民主、和谐、活跃的学习空间,培养学生学习数学的能力。
材料准备:一米长的绳子一条,每个学生准备三个大小相同的圆纸片,水彩笔、直尺等文具。
【《分数除法》说课稿】相关文章:
分数除法 05-14
《分数与除法》 05-08
分数与除法 06-15
《分数除法》 05-15
《分数与除法》 05-19
分数除法的 04-24
《分数除法》 01-15
《笔算除法》说课稿09-28
《分数除法(一)》 05-14