首页 申请书推荐信 通知工作总结 策划书工作报告合同演讲稿职业规划
当前位置:98158范文网>教育范文>说课稿>数学说课稿

数学说课稿

时间:2022-02-07 13:36:57 说课稿 我要投稿

实用的数学说课稿合集六篇

  作为一名教职工,就难以避免地要准备说课稿,编写说课稿是提高业务素质的有效途径。说课稿要怎么写呢?以下是小编整理的数学说课稿6篇,供大家参考借鉴,希望可以帮助到有需要的朋友。

实用的数学说课稿合集六篇

数学说课稿 篇1

  今天我说课的课题是“两条直线所成的角”的第一课时,我准备从以下五个方面来汇报我是如何处理教材和设计教学过程的。

  一.关于教学目标的确定

  通过这节课的教学,要使学生掌握两条直线所成角的概念和夹角公式的推导方法,掌握一直线到另一直线的角和两条直线的夹角公式及其应用,正确理解夹角公式成立的条件及特殊夹角的求法。能力的培养也是数学教学不可缺少的一环,通过这节课的教学,应培养学生数形结合的能力和提高他们阅读理解的自学能力。另外渗透“由特殊到一般”的辩证思想和“分类讨论”的思想也是这堂课的重要目标。

  二.关于教材内容的选择和处理

  这节课所选用的教学内容是:教材中的定义、公式,但例题的选择较课本难度有所加深,这是因为教材上的例题只是公式的直接应用,通过学生自学和思考老师提出的问题后,对一般学生来说是没有什么问题的。因此,本着因材施教的原则,并着眼于会考与高考的要求,例题的难度有所加深,这样选择教学内容也是与教学目标相符的。

  我认为这节课的教学重点是两条直线的夹角公式及其应用,这是因为:

  1.《全日制中学数学教学大纲》上明确规定要求学生“掌握两条直线所成的角”。

  2. 数学知识的应用也是会考与高考的要求,因此两条直线夹角公式的应用毫无疑问地成为重点。

  教学难点是直线L1到L2的角的公式的推导,理由有二:

  1. 由于一条直线到另一条直线的角是带方向的角,这是学生不易理解的地方。

  2. 在推导直线L1到L2的角的公式的过程中,要进行分类讨论,这是学生的薄弱环节。

  三.关于教学方法的确定

  根据这节课的内容和学生的实际水平,我采用自学辅导的方法进行教学。

  自学辅导法符合教学论中的自觉性和积极性、巩固性、可接受性,教学与发展相结合,教师的主导作用与学生的主体地位相统一等原则;自学辅导法的关键是通过老师的引导和启发要求学生针对老师提出的问题阅读理解最终解决问题。这样就能充分调动学生学习的主动性和积极性,使学生变被动学习为主动学习。

  四.关于学法的指导

  课堂教学的目的就是在给学生传授知识的同时,教给他们好的方法,使他们“会学习”。

  这一节课一开始让学生在观察中产生疑问,在疑惑不解中,通过老师的引导。并通过自已阅读教材使疑问逐步解决,这样做既激发了他们的学习欲望,也培养了他们发现问题、解决问题的能力。

  在给出例题后,大多数学生能想到利用入射角等于反射角来解决,这时要鼓励学生再“尝试”用其它方法来解,通过尝试,学生的思维能力得到了培养,思维空间得到了拓广,既活跃了课堂气氛,也提高了学生的学习积极性。

  五.关于教学过程的设计

  首先引导学生回忆两条直线平行与垂直的判定方法,并从两条直线垂直是两条直线相交的特殊情况出发,引出“两条直线所成的角”这一课题。

  接着打出投影片①,让学生通过观察说出图中直线L1与L2所成角的锐角(或直角)θ的大小,并要求给出θ与直线L1、L2的倾斜角α1、α2之间的关系。图(1)、(2)学生容易观察解决,而图(3)、(4)却无法直接观察出θ的大小 ,但能确定θ与α1、α2之间的关系,这时老师应趁热打铁,引导学生走上“已知三角函数值求角”的正确轨道上。这样设计,使学生目标明确,避免盲目性。

  然后老师挂出小黑板,出示问题(1)—(5),让学生带着问题阅读教材,使他们明确直线L1到L2的角的公式与两直线夹角公式的联系与区别。这样既培养了学生独立思考和自学能力,又使他们主动积极地参与教学活动。

  阅读完后先回答问题(1)—(5),这时为了学生对所学公式有较深的理解,先让学生将开始给出的图(3)、(4)作为课堂练习进行巩固训练,并要两位学生演板,演板后师生共同订正。接着为了使学生对两条直线所成的角有较全面的认识,老师与学生共同讨论各种位置的两条直线所成角的.情形,这样的安排也是为高考《考试说明》中要求掌握“逻辑划分(分类讨论)的思想”而设计的,目的是让学生形成对知识系统化和网络化的认识,也突破了本节课的难点。

  “精通的目的在于学习”。公式的应用是这节课的重点,在学生把概念和公式的来龙去脉搞清楚后,再打出投影片②(例题),例题是根据《会考纲要》中“能用坐标法解决涉及直线的简单应用(如光线的反射问题、有关轴对称和点对称问题)”的要求而选取的。大多数学生可以想到利用反射角等于入射角来求解,此时,进一步引导学生从对称的角度来思考,又有两种求解方法(见投影片)。

  例题讲完后再将问题加以引申,这样的设计主要是让学有余力的学生没有“饥饿感”。

  课堂小结是教学的重要环节之一,为了便于学生记忆和理解,我把这堂课的内容归纳为两个概念、两个公式和四种情形。然后给出两个思考题(见投影片③)。思考题的目的是促使学生正确、周密地思考问题,同时为讲解下一节课作准备,起承上启下的作用。

  最后是布置作业,它是紧紧围绕本节课的教学内容而选择的,通过作业的训练可以及时反馈学生所学知识的掌握程度。

  以上我从五个方面阐述了“两条直线所成的角”中第一课时教学内容的有关设想,不足之处,请各位老师批评赐教。

数学说课稿 篇2

  一、说教材

  1、本节教材是义务教育小学数学(鲁教版)六年下册第二单元《圆柱和圆锥》中《圆锥体积》的第一课时。教学内容为圆锥体积计算公式的推导、例五、相应的“试一试”及“练一练”。

  2、本节教材是在学生已经掌握了圆柱体积计算及其应用和认识了圆锥的基本特征的基础上学习的,是小学阶段学习几何知识的最后一课时内容。让学生学好这一部分内容,有利于进一步发展学生的空间观念,为进一步解决一些实际问题打下基础。教材按照实验、观察、推导、归纳、实际应用的程序进行安排。

  3、教学重、难点:⑴教学重点:能正确运用圆锥体积计算公式求圆锥的体积;⑵教学难点:理解圆锥体积公式的推导过程。

  4、教学目标:⑴知识方面:理解并掌握圆锥体积公式的推导过程,学会运用圆锥体积计算公式求圆锥的体积;⑵能力方面:能解决一些有关圆锥的实际问题,通过圆锥体积公式的推导实验,增强学生的实践操作能力和观察比较能力;⑶德育方面:通过实验,引导学生探索知识的内在联系,渗透转化思想,培养交流与合作的`团队精神。

  5、教、学具准备:⑴教具准备:等底等高的圆柱、圆锥一对;⑵学具准备:让学生分组制作等底等高的圆柱、圆锥若干对,准备一定量的细沙。

  二、说教法

  著名教育家布鲁纳说过:“教学不是把学生当成图书馆,而是要培养学生参与学习的过程。”学生是学习的主体,只有通过自身的实践、比较、思索,才能更加深刻地领略到知识的真谛。因此,我在设计教法时,根据本节几何课的特点,结合小学生的认知规律,采用以下几种教法:

  1、实验操作法。波利亚说过:“学习任何知识的最佳途径是由自己去发现,因为这种发现理解最深,也最容易掌握其中的内在规律、性质和联系。”因此,我在学生已经认识圆锥的基础上,设计了一个实验:通过学生动手操作,用空圆锥盛满沙后倒入等底等高空圆柱中,发现“圆锥的体积等于和它等底等高的圆柱体积的三分之一”。利用实验法,为推导出圆锥的体积公式发挥桥梁和启智的作用,有助于发展学生的空间观念,培养观察能力、思维能力和动手操作能力,为进一步学习,提供了丰富的感性材料,从而逐步从具体的操作过渡到内部语言。

  2、比较法、讨论法、发现法三法优化组合。几何知识具有逻辑性、严密性、系统性的特点。因此,在做实验时,我要求学生运用比较法、讨论法、发现法得出结论:“圆锥的体积等于与它等底等高圆柱体积的三分之一。”然后,再让学生讨论假如这句话中去掉“等底等高”这几个字还能否成立,并让学生理解“等底等高”的重要意义,得出结论:不是所有的圆锥体积都是圆柱体积的三分之一,从而加深了“等底等高”这个重要的前提条件。

  三、说学法

  “人人学有价值的数学,人人都能获得必要的数学,不同的人在数学上得到不同的发展”是新世纪数学课程的基本理念。新课程标准还强调引导学生主动参与、亲自实践、独立思考、合作探究,改变单一的记忆、接受、模仿的被动学习方式。因此,我在讲求教法的同时,更重视对学生学法的指导。

  1、实验转化法

  有些知识单凭解说是无法让学生真正理解的,只有通过实验,才能深刻领悟其中的内在奥秘。在指导学生进行实验操作时,我着重从三个方面进行引导:首先,让学生做好操作的准备,也就是各自准备好等底等高的圆柱、圆锥一对,一定量的沙;其次,告诉他们操作的方法、步骤和注意点;第三,引导学生在操作中比较、发现、总结。这样,通过实验操作推导得出圆锥的体积公式,培养了学生观察比较、交流合作、概括归纳等能力。

  2、尝试练习法

  苏霍姆林斯基认为:“成功的欢乐是一种巨大的情绪力量,它可以促进儿童好好学习的愿望。”本节课在学习例五时,放手让学生尝试自己自己去发现、总结、归纳,挖掘学生的潜能,让他们体验学习成功的乐趣,调动学生学习的积极性和主动性,发挥学生的主体作用,养成良好的学习习惯。

  四、说教学程序

  本节课我设计了以下四个教学程序:

  1、谈话导入

  ⑴出示圆柱:如果想知道这个容器的容积,怎么办?

  ⑵出示圆锥:如果想知道这个容器的容积,怎么办?

  2、教学例五

  ⑴引导观察:这个圆柱和圆锥有什么相同的地方?

  ⑵估计一下:这个圆锥的体积是圆柱体积的几分之几?

  ⑶讨论:可以用什么方法来验证你的估计?

  ⑷分组验证;引导学生用适合的方法进行操作验证。

  ⑸交流:说说自己小组是怎么验证的,得到的结论是什么?

  ⑹讨论:①通过实验,我们知道这个圆锥的容积是这个圆柱容积的三分之一,那能不能说圆锥的体积就是圆柱的体积的三分之一?为什么?应该怎么说才准确?②那怎么算出这个圆锥的容积呢?③推导出圆锥体积的公式(师板书)。④如果已知r和h圆锥体积公式还可以怎样计算?如果已知d和h圆锥体积公式怎样计算?

  ⑺完成“试一试”。

  3、巩固练习

  做“练一练”。

  4、归纳总结

  通过本节课你有什么收获?有哪些问题需要我们今后注意?

数学说课稿 篇3

  大家好!今天我说课的内容是人教版小学数学六年级上册第二单元《分数除法》中的《一个数除以分数》

  教材分析:

  《一个数除以分数》是人教版小学数学六年级上册第二单元《分数除法》第2节的内容,它包括了分数除法的各种情况,学生理解了这个计算法则,就能掌握分数除法的计算方法。

  这部分内容是在学生具有了分数除以整数的计算概念及之前学习的分数乘法的经验的基础上教学的,是学生进一步学习分数除法中解决问题、比的认识重要基础,学习的过程中用到了转化、归纳、数形结合、验证的数学思想方法。本课时通过例2的教学使学生学会探索分数除法的计算方法。

  结合以上的分析和课标的要求,根据六年级学生的认知发展水平,我拟定本课时的教学目标为:

  教学目标:

  1、经历归纳分数除法的计算法则,使学生理解和掌握一个数除

  以分数的计算方法及算理,能正确计算。

  2、培养学生的计算能力及数形结合、迁移类推、转化等基本数学思想。

  教学重点:理解一个数除以分数的算理,概括出分数除法的'计算法则,能正确计算。

  教学难点:理解整数除以分数的计算方法。

  教法与学法:为突出重点,分散难点,始终使学生参与知识形成的过程。引导学生将“图”与“式”对照起来,进行分析和说理。从而在发挥直观形象思维对于抽象逻辑思维支持作用的同时,让学生逐渐感受数形结合的优势。根据高年级儿童已初步从抽象思维过渡到逻辑思维的认知特点,我设计了4个教学环节。教学中通过学生观察、分析、讨论等方式,引导学生寻找计算方法,并通过发现、总结、运用法则调动学生的积极性。

  教学过程

  一、谈话引入,出示练习题。

  1.复习分数的意义,为例2教学时画线段图打基础。

  2. 小明2小时走6千米,平均每小时走多少千米?(通过复习,使学生回忆起路程、时间与速度之间的数量关系,有目的地引发学生利用旧知识去解决新问题的意识)

  3.通过口算,回忆分数除以整数的计算方法,为学习一个数除以分数打基础。

  二、探究新知。

  1.理解题意,列出算式。

  (1)出示例3:小明 小时走了2,小红 小时走了。谁走得快些?

  教学时,我先让学生理解题意,然后让学生说出列式依据

  (2)学生独立列出算式

  2 ÷

  2.探索整数除以分数的计算方法。

  运用猜测,验证的方法教学。指导学生通过画线段图理解题意,分步计算,理解每一步求什么,怎么计算。

  通过比较2÷ = 2 × 这两个算式,学生总结出计算法则。

  3.探索分数除以分数的计算方法。

  (1)让学生运用类推迁移,自己通过画线段图理解计算过程。通过展示学生作品,进行交流,适当指导,加深理解。

  (2)观察,总结计算法则。

  三.巩固练习。

  1.课后“做一做”第1题。这是考察学生对计算法则的运用。

  2. 课后“做一做”第2题。另加一道含有带分数的除法计算题。

  考查学生运用分数除法计算法则进行计算,例题中没有出现带分数的除法,另加的含有带分数的除法计算,考察学生是否会灵活利用所学知识。

  3.计算。

  通过两组题的计算,以及比较每组算式中商和被除数的大小,再观察,总结出商的变化与除数的关系,为下一题不计算,说哪道题的商大于被除数,说哪道题的商小于被除数打基础,降低难度。

  4. 不计算,说哪道题的商大于被除数,说哪道题的商小于被除数。

  5. 填空。

  分数除法抽象为字母形式,考考学生还会运用运算法则吗?

  (练习设计突出了计算法则,加深了学生对法则的理解,练习形式灵活多样,有目的、有层次,即可以完整地检查学生掌握法则的情况,又提高乐学生的学习兴趣和应变能力)

  四、回顾。

  通过教师问:今天你有什么收获?与大家分享一下吧!使学生回顾本课的知识。

  说板书设计:

  一个数除以分数

  2 ÷ = 2 × =3() ÷ = ×=2()

  线段图及分析过程 计算法则

  说 :

  语言不够精炼。

  有时有些不放心学生,有代替学生回答现象。

  预设时没有准确考虑学生情况,导致教学时间安排不合理,后边练习题还有拓展练习没有处理。

数学说课稿 篇4

  一。教材分析

  1.教材的地位和作用

  这节课是在学生已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。进一步学习二次函数将为它们的解法提供新的方法和途径,并使学生更为深刻的理解"数形结合"的重要思想。而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。所以这节课在整个教材中具有承上启下的重要作用。

  2.教学目标和要求

  (1)知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。

  (2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力。

  (3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心。

  3.教学重点:对二次函数概念的理解。

  4.教学难点:由实际问题确定函数解析式和确定自变量的取值范围。

  二。教法学法设计

  1.从创设情境入手,通过知识再现,孕伏教学过程。

  2.从学生活动出发,通过以旧引新,顺势教学过程。

  3.利用探索、研究手段,通过思维深入,领悟教学过程。

  三。教学过程

  (一)复习提问

  1.什么叫函数?我们之前学过了那些函数?

  (一次函数,正比例函数,反比例函数)

  2.它们的形式是怎样的?

  (y=kx+b,k≠0;y=kx ,k≠0;y=k/x , k≠0)

  3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k≠0的条件? k值对函数性质有什么影响?

  【设计意图】复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解。强调k≠0的条件,以备与二次函数中的a进行比较。

  (二)引入新课

  函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。看下面三个例子中两个变量之间存在怎样的关系。(电脑演示)

  例1圆的半径是r(cm)时,面积s (cm?)与半径之间的关系是什么?

  解:s=πr?(r>0)

  例2设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。如果存款额是100元,那么请问两年后的本息和y(元)与x之间的关系是什么(不考虑利息税)?

  解: y=100(1+x)?

  =100(x?+2x+1)

  = 100x?+200x+100(0

  教师提问:以上两个例子所列出的函数与一次函数有何相同点与不同点?

  【设计意图】通过具体事例,让学生列出关系式,启发学生观察,思考,归纳出二次函数与一次函数的联系: (1)函数解析式均为整式(这表明这种函数与一次函数有共同的特征)。(2)自变量的最高次数是2(这与一次函数不同)。

  (三)讲解新课

  以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。

  二次函数的'定义:形如y=ax2+bx+c (a≠0,a, b, c为常数) 的函数叫做二次函数。

  巩固对二次函数概念的理解:

  1.强调"形如",即由形来定义函数名称。二次函数即y 是关于x的二次多项式(关于的x代数式一定要是整式)。

  2.在 y=ax2+bx+c 中自变量是x ,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r>0)

  3.为什么二次函数定义中要求a≠0 ?

  (若a=0,ax2+bx+c就不是关于x的二次多项式了)

  4.在例2中,二次函数y=100x2+200x+100中, a=100, b=200, c=100.

  5.b和c是否可以为零?

  由例1可知,b和c均可为零。

  若b=0,则y=ax2+c;

  若c=0,则y=ax2+bx;

  若b=c=0,则y=ax2.

  注明:以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c是二次函数的一般形式。

  【设计意图】这里强调对二次函数概念的理解,有助于学生更好地理解,掌握其特征,为接下来的判断二次函数做好铺垫。

  判断:下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c.

  (1)y=3(x-1)?+1

  (2)s=3-2t?

  (3)y=(x+3)?- x?

  (4) s=10πr?

  (5) y=2?+2x

  (6)y=x4+2x2+1(可指出y是关于x2的二次函数)

  【设计意图】理论学习完二次函数的概念后,让学生在实践中感悟什么样的函数是二次函数,将理论知识应用到实践操作中。

  (四)巩固练习

  1.已知一个直角三角形的两条直角边长的和是10cm.

  (1)当它的一条直角边的长为4.5cm时,求这个直角三角形的面积;

  (2)设这个直角三角形的面积为Scm2,其中一条直角边为xcm,求S关于x的函数关系式。

  【设计意图】此题由具体数据逐步过渡到用字母表示关系式,让学生经历由具体到抽象的过程,从而降低学生学习的难度。

  2.已知正方体的棱长为xcm,它的表面积为Scm2,体积为Vcm3.

  (1)分别写出S与x,V与x之间的函数关系式子;

  (2)这两个函数中,那个是x的二次函数?

  【设计意图】简单的实际问题,学生会很容易列出函数关系式,也很容易分辨出哪个是二次函数。通过简单题目的练习,让学生体验到成功的欢愉,激发他们学习数学的兴趣,建立学好数学的信心。

  3.设圆柱的高为h(cm)是常量,底面半径为rcm,底面周长为Ccm,圆柱的体积为Vcm3

  (1)分别写出C关于r;V关于r的函数关系式;

  (2)两个函数中,都是二次函数吗?

  【设计意图】此题要求学生熟记圆柱体积和底面周长公式,在这儿相当于做了一次复习,并与今天所学知识联系起来。

  4. 篱笆墙长30m,靠墙围成一个矩形花坛,写出花坛面积y(m2)与长x之间的函数关系式,并指出自变量的取值范围。

  【设计意图】此题较前面几题稍微复杂些,旨在让学生能够开动脑筋,积极思考,让学生能够"跳一跳,够得到".

 (五)拓展延伸

  1. 已知二次函数y=ax2+bx+c,当 x=0时,y=0;x=1时,y=2;x= -1时,y=1.求a、b、c,并写出函数解析式。

  【设计意图】在此稍微渗透简单的用待定系数法求二次函数解析式的问题,为下节课的教学做个铺垫。

  2.确定下列函数中k的值

  (1)如果函数y= xk^2-3k+2 +kx+1是二次函数,则k的值一定是______

  (2)如果函数y=(k-3)xk^2-3k+2+kx+1是二次函数,则k的值一定是______

  【设计意图】此题着重复习二次函数的特征:自变量的最高次数为2次,且二次项系数不为0.

  (六) 小结思考

  本节课你有哪些收获?还有什么不清楚的地方?

  【设计意图】让学生来谈本节课的收获,培养学生自我检查、自我小结的良好习惯,将知识进行整理并系统化。而且由此可了解到学生还有哪些不清楚的地方,以便在今后的教学中补充。

 (七) 作业布置

  必做题:

  1. 正方形的边长为4,如果边长增加x,则面积增加y,求y关于x 的函数关系式。这个函数是二次函数吗?

  2. 在长20cm,宽15cm的矩形木板的四角上各锯掉一个边长为xcm的正方形,写出余下木板的面积y(cm2)与正方形边长x(cm)之间的函数关系,并注明自变量的取值范围。

  选做题:

  1.已知函数 是二次函数,求m的值。

  2.试在平面直角坐标系画出二次函数y=x2和y=-x2图象

  【设计意图】作业中分为必做题与选做题,实施分层教学,体现新课标人人学有价值的数学,不同的人得到不同的发展。另外补充第4题,旨在激发学生继续学习二次函数图象的兴趣。

  四。教学设计思考

  以实现教学目标为前提

  以现代教育理论为依据

  以现代信息技术为手段

  贯穿一个原则——以学生为主体的原则

  突出一个特色——充分鼓励表扬的特色

  渗透一个意识——应用数学的意识

数学说课稿 篇5

  一、说教材

  ⒈教学内容

  义务教育六年制小学课本第三册第五单元第一课时的《除法的初步认识》。

  ⒉教学内容的地位、作用和意义

  除法的初步认识是教学中的一个难点。它是在学生学习了表内乘法(一)的 基础上进行教学的,本节课教学的“把一个数平均分成几份,求每份是多少“是学生学习除法的开始,为学生今后学好除法的其他知识打下基础。 ⒊教学目标 根据大纲的要求,结合教材的特点及学生的实际情况,我制定了以下几个目 标: ⑴让学生初步了解除法的含义,明确“平均分”的意思,知道把一个数平均 分成几份,求每份是多少,要用除法计算。 ⑵认识除号,能正确地读、写除法算式。 ⑶通过操作活动,培养学生的观察能力和思维能力,同时培养学生的实践意识。

  ⒋教学重难点及关键

  由于学生缺乏生活经验,对今后初学除法应用题会感到有些困难。为此本课时的教学重点是了解除法的含义,知道把一个数平均分成几份,求每份是多少,要用除法计算;教学难点是理解“平均分”的含义;也是教学的关键之所在。

  二、说教法

  “教学有法,但无定法,贵在得法”,选择适当的教学方法能唤起学生强烈 的求知欲望,促使他们保持较久的学习热情,为了达到预定的教学目标,取得良好的教学效果,我采用了以下的教法:

  ⒈启发引导法:教师步步启发,层层设问,激发学生兴趣和求知欲,促使学生在积极的思维中获取知识,通过教师的适当引导,让学生积极主动地探求新知。

  ⒉尝试法:通过尝试,让学生自己探索,发现知识规律,有利于发挥学生的主体作用,同时使学生在探索知识规律的过程中发展思维能力。

  ⒊演示操作法:直观演示能给学生提供鲜明的感性材料,通过多种感官协同作用,利用学生在操作中建立表象,使抽象思维转化为形象思维。

  ⒋谈话法:

  运用师生之间的谈话组织教学,既可使学生的思维方向明确,又便于教师了解学生理解和掌握知识的程度。

  ⒌练习法:

  通过各种练习,加深学生对知识的理解和掌握,形成熟练的解题技能,进一步发展学生的思维。

  ⒍讨论法:

  运用讨论法,可以降低教学难度,促进学生积极参与到接受新知识的过程中来,同时培养了学生积极参与、密切合作的能力。

  三、说学法

  古人云:“教之以鱼,只供一餐,授之以渔,受用终生”,教师既管教,又要 1 管学,把教落在学上,重点是把学习方法教给学生,使学生乐学、会学,在本节课的教学中,让学生学习并初步掌握的学习方法有:

  ⒈归纳法:通过例题的教学,经过理解、分析、归纳推导出除法的意义。

  ⒉观察法:指导学生仔细观察,学会找知识的生长点和解题的关键所在。

  ⒊在练习中,学会融会贯通、举一反三地掌握知识,解决问题。

  ⒋通过提问与练习,让学生逐渐培养自己的口头表达能力和解题技能。

  ⒌指导学生用语言表达自己的操作过程,逐步扩展到用语言表达思维的方法。

  ⒍在观察、比较中分析,初步渗透抽象概括数学知识的思维方法。

  四、说教学程序

  合理安排教学程序是教学成功的关键之一,根据教材内容和学生掌握知识的 一般规律,我安排了以下的教学程序:

  (一)、认识“平均分” 心理学家的研究表明,儿童的认知规律是感知——表象——概念。鉴于这个特点,此环节我是这样设计的:

  ⒈贴出图片:8个梨,4个盘子。提问:

  ⑴老师这儿有8个梨,平均分在4个盘子里,每盘分几个?“平均分”是怎样分呢?小朋友,请你们仔细看老师分。(演示:每个盘子里放一个)

  ⑵每个盘子里放了几个?分完了没有?为什么?那么再继续分。(演示:每个盘子里再放一个)

  ⑶分完了没有?现在你们看,每个盘子里梨的个数是几个,它们的个数怎么样? 在此,通过教师演示,让学生初步感知“平均分”,为学生建立“平均分”的概念打下基础。

  ⒉说明:

  这样一个一个地分,每份的数量同样多,叫做“平均分”。 通过教师说明,使学生明确“平均分”的含义。

  ⒊指名生说一说:“平均分”要注意什么? 通过说一说,不仅让学生进一步明确“平均分”的含义,同时有利于培养学生的数学交流能力。

  ⒋判断。

  投影出示一组图形。

  ⑴指出图中哪些是“平均分”?

  ⑵为什么第二图和第四图不是“平均分”?能不能变成“平均分”?学生回答后,教师抽动投影片成下图。

  2

  ⑶指名生说出各图是把多少平均分成几份? 此题的练习,让学生及时巩固对“平均分”含义的理解。

  ⒌提问:8根小棒,平均分成4份,每份几根?怎样分?可让学生利用学具边分边说。 通过实际操作和口头表述,不仅能提高学生的动手操作能力和口头表达能力,而且还能使学生初步了解平均分和除法的含义。 此环节的教学,通过教师示范演示、学生观察、辨析比较、动手操作等教学过程,让学生建立起“平均分”的概念,解决了除法初步认识中的一个关键问题。

  (二)、揭示课题

  像这样把一些物体平均分成几份,求每份是几,要用除法计算,今天我们就来学习除法。 开门见山将具体清晰的学习目标呈现给学生,较好地发挥了目标的导向和激励功能,使学生明确学习任务,产生积极的学习心向,从而主动地参与学习过程。

  (三)、认识除号

  ⒈我们知道加法、减法、乘法每一种运算都有运算符号,除法也一样,它的运算符号叫做除号。

  ⒉先让学生试着说除号是怎样写的,再教师讲解除号是这样写的,中间写一横,上面一个小圆点,下面一个小圆点。注意上下两点要对齐。

  ⒊教师示范,小朋友在练习本上写两个除号,一定要注意上下两个点要对齐。 此环节把“除号”的认识作为一个单独的教学环节进行讲解,通过教师示范,学生练习书写,让学生对除号留下深刻的印象。

  (四)、列式计算及讲解意义

  此环节教学是本节课的重点,为了使学生更好地掌握知识,我采用了边讲边 练的教学方法进行教学。我设计了以下几个步骤:

  ⒈教师引导:刚才,我们把8个梨平均放在4个盘子里,求每盘有几个,要用除法计算,怎么列式呢?

  ⑴我们把几个梨平均分?“8”是被分的数写在除号前面。

  ⑵平均分成了几份?“4”写在除号后面。

  ⑶每盘分得几个?就等于2。

  ⑷这个算式怎么读呢?让学生试着读。

  ⑸“8 ÷ 4 = 2”表示什么? 通过实物图的演示及教师的讲解,让学生明确除法算式的写法,同时也能让学生明确除法算式各部分所表示的意义,为下节课教学打下基础;通过让学生试着读,培养学生的探索精神,同时能正确地读出除法算式;通过说意义,不仅让学生明确除法的含义,同时培养学生的口头表达能力。

  ⒉练习。⑴填空: 24 ÷ 4 = 6表示把( )平均分成( )份,每份是( )。 3 12 ÷ 6 = 2表示把( )平均分成( )份,每份是( )。 ⑵先说出图意,再列式。

  ⑶根据题意,说出算式。

  ①把20平均分成5份,每份是几?

  ②把16平均分成4份,每份是几?

  ⑷看算式说出意义。 6 ÷ 2 = 3 12 ÷ 2 = 6 12 ÷ 4 = 3 20 ÷ 4 = 5 以上练习题的设计,围绕着此环节的重点和难点进行着,由形象具体逐步抽象化,是符合学生的认知规律,有利于学生完善数学认知结构,建立良好的数学知识体系。 ⒊小结。 我们学习了什么知识?把一个数平均分成几份,求每份是多少?用什么方法计算? 通过小结,让学生明确本节课所学的内容。

  ⒋质疑。 小学数学教学大纲明确指出,要启发学生动脑筋想问题,要鼓励学生质疑问难,提出自己的独立见解,在这个环节中,我首先提问:“通过这节课的学习,同学们还有哪些弄不明白的问题”,接着教师及时解答或请同学帮助解答。

  (五)、巩固练习

  众所周知,练习是使学生掌握知识、形成技能、发展智力的重要手段,本节 课我安排了以下几个层次的练习。⒈读出下面的算式,用 摆一摆,再填得数。 8 ÷ 2 = 10 ÷ 5 = 12 ÷ 3 = 此题的练习,面向全体学生,通过动手操作巩固新知的理解和掌握。 ⒉在下面算式的方框里填上适当的.数。

  ⑴把15个 ,平均分成3份,每份是几个?15 ÷ =

  ⑵把15个 ,平均分成5份,每份是几个? ÷ = 此题的练习,以进一步加深对新知的理解和掌握。

  ⒊根据题目说出算式。

  ⑴把18棵树,平均捆成3捆,每捆有几棵?

  ⑵小冬把6只兔子,平均关在3个笼子里,每个笼子关几只?

  ⑶妈妈买来8个苹果,平均分给爷爷和奶奶,每人分几个? 讨论:为什么列式是“8÷2”,“2”是从哪里来的。

  ⑷把10个苹果平均分给5个人吃,每人吃几个?

  ⑸把5个苹果平均分给10个人吃,每人吃几个? 讨论:上面两题为什么一个列式是“10÷5”,一个列式是“5÷10”? 以上的5小题所反映的事实都来自于学生的生活实际,体现了应用的数学和 4 问题解决的数学,

  ⑷⑸两题的列式以及算式的比较,有利于学生对除法意义的理解,虽然学生还不会计算“5÷10”,但让学生先试一试,可以了解学生的思维水平,拓展学生思维的空间。通过讨论,培养学生的互助、合作的精神。 ⒋游戏。 教师出示12朵花,请学生把12朵花平均分成不同的份数,再列出算式,看谁的分法多。 此题的练习,是从学生感兴趣的事物出发,为他们提供观察和操作的机会,使他们体会到数学就在身边,感受到数学的趣味和作用,对数学产生亲切感。同时,一题多解的练习,有利于培养学生思维的有序性和发散性,从而培养学生的创造思维。 以上练习题是围绕本节课的重点和难点设计的,层层递进,由“再现性”进入到“内化性”深入到“创造性”,提高了学生分析问题和解决问题的能力,符合当前素质教育的要求,培养学生的创新精神和实践能力。

  (六)、课堂总结 同学们都学得很好,我们对除法有了一个“初步的认识”,下节课我们还要继续学习除法的有关知识。 评价学生在课堂上的学习

数学说课稿 篇6

  一、说教材

  本节课选自人教版八年级上册第15章第二节内容,它是在学生已经掌握了多项式乘法之后,自然过渡到具有特殊形式的多项式的乘法,是从一般到特殊的认知规律的典型范例。对它的学习和研究,不仅给出了特殊的多项式乘法的简便算法,而且为以后的因式分解、分式的化简等内容奠定了基础,同时也为学习完全平方公式的学习提供了方法。因此,平方差公式作为初中阶段的第一个公式,在教学中具有很重要地位。

  二、说学情

  学生已熟练掌握了幂的运算和整式乘法,但在进行多项式乘法运算时常常会出现符号错误及漏项等问题;另外,数学公式中字母具有高度概括性、广泛应用性,鉴于八年级学生的认知水平,理解上有困难。因此,我们把教学难点定为:理解平方差公式的结构特征,灵活应用平方差公式。

  三、说教学目标

  基于对教材的理解和分析,我在教学中以学生为主体,以学生的学为根本,我把本课的目标定位为:

  知识与技能目标:了解平方差公式产生的背景,理解平方差公式的意义,掌握平方差公式的结构特征,并能灵活运用平方差公式解决问题。

  过程与方法目标:经历平方差公式产生的探究过程,培养观察、猜想、归纳、概括、推理的能力和符号感,感受利用转化、数形结合等数学思想方法解决实际问题的策略。

  情感态度与价值观目标:通过探究平方差公式,形成学习数学公式的一般套路,体会成功的喜悦,培养团结协助的意识,增强学生学数学、用数学的兴趣。

  教学重点:理解平方差公式的意义,掌握平方差公式的结构特征。

  教学难点:运用平方差公式解决问题。

  四、说教法、学法

  课堂是学生学习的主阵地,真正做到把课堂还给学生,因而我采取的的教学模式定为:三先两主动,即让学生先说话、先动手、先总结,让学生主动提问、主动探索。学习方法:学生积极参与、大胆猜想、合作交流和自主探索。

  五、说教学过程

  本节课教学按以下五个流程展开

  五个流程:

  创设情景

  引入新课

  合作交流探求新知

  巩固深化内化新知

  总结概括

  布置作业:

  (一)创设情景,引入新课

  数学课标强调:“数学来源于实际生活”,为了体现这一思想,我设计了一个实际问题。这里只提供情境,刺激学生主动提出问题,因为“提出问题”比“解决问题” 更重要。这个以生活实例创设的情境,不仅激发学生的求知兴趣,又为平方差公式的引人服务,更为说明平方差公式的几何意义做好铺垫。

  (二)合作交流,探求新知

  首先,我用情境中一道题目,并再安排了两个练习,通过对特殊的多项式与多项式相乘的计算,既复习了旧知,又为下面学习平方差公式作了铺垫,让学生感受从一般到特殊的认识规律,引出乘法公式----平方差公式。

  接着,教师提问,学生通过自主探究、合作交流,发现规律,式子左边是两个数的和与这两个数的差的积,右边是这两个数的平方差,并猜想出:这样设计使学生在已掌握的多项乘法法则的基础上,探索具有特殊形式的多项式乘法──平方差公式,自然、合理地探究出新知。

  再次,引导学生从“数”的角度验证猜想,对于任意的a、b,由学生运用多项式乘法计算:验证了其公式的正确性。

  顺势鼓励学生用自己的语言归纳表述,总结出公式,从而提高学生的语言组织与表达能力。

  然后,教师通过分析公式的本质特征使学生掌握公式,在认清公式的结构特征的基础上,进一步剖析a、b的广泛含义,抓住了概念的核心,使学生在公式的运用中能得心应手,起到事半功倍的效果。

  最后,用学生最喜欢的拼图游戏,引导学生从“形”的角度认识平方差公式的几何意义,再次验证了猜想.渗透了数形结合的思想,让学生体会到代数与几何的内在联系,引导学生学会从多角度、多方面来思考问题。

  (三)巩固深化,内化新知

  总结出平方差公式后,我先设计两个简单练习题。通过练习,使学生加深对平方差公式结构特点的认识和理解,进一步掌握平方差公式的本质特征和运用平方差公式必须具备的.条件。

  然后设计了三个例题。例1和例2是教材上的内容,例3是我设计的一道实际问题。

  例1有两道小题,其中设计第(1)题,然后学生完成。第(2)题学生板演,师生共同纠错。

  例2有两道小题,先让学生尝试练习,出错后教师及时纠正,使学生认识深刻。第一题体现了转化的思想和数式通性;另一题是平方差公式与一般多项式乘法的综合,强调不能用公式的仍按多项式乘法法则进行。

  例3运用平方差公式解决实际问题,体现了数学来源于生活,服务于生活,学生感受到学习数学的价值,设计此题与平方差公式的几何意义相吻合,加深学生对平方差公式的理解。

  (四)反馈练习,巩固新知

  练习题的设计有梯度,从基础应用公式入手,到拓展提高,加强基本知识和基本技能训练,使不同水平的学生学习都有收获,体现出“人人学有用的数学”。

  在练习的基础上,教师归纳总结,提升学习理念。

  (五)总结概括,自我评价

  从知识和数学思想两个方面加以小结,使学生对本节课的知识有一个系统全面的认识。

  最后,作业分层处理,体现作业的巩固性和发展性原则,尊重学生的个体差异,满足多样化的学习需要,让不同的人在数学上得到不同的发展。

  六、说板书设计

【数学说课稿】相关文章:

数学说课稿07-22

《数学广角》说课稿07-05

数学统计说课稿11-09

初中数学说课稿02-16

数学《周长认识》说课稿09-10

小学数学说课稿11-05

比的应用数学说课稿11-02

数学认识路线说课稿10-19

数学体积与容积说课稿08-27

初中数学说课稿08-29

Baidu
map